
Best practices & 
advanced TypeScript tips 
for React developers
Maurice de Beijer
@mauricedb



 Maurice de Beijer

 The Problem Solver

 Microsoft MVP

 Freelance developer/instructor

 Currently at https://someday.com/

 Twitter: @mauricedb

 Web: http://www.TheProblemSolver.nl

 E-mail: maurice.de.beijer@gmail.com

2© ABL - The Problem Solver

https://someday.com/
https://twitter.com/MauriceDB
http://www.theproblemsolver.nl/
mailto:maurice.de.beijer@gmail.com
http://www.theproblemsolver.nl/


Topics

 Writing React components using TypeScript
 Mutually exclusive component props

 Generic React component prop types

 Deriving React component prop types

 Inferring TypeScript types

 TypeScript stricter features
 Beyond strict using noUncheckedIndexedAccess

 Validating data at the boundary using Zod
 Inferring TypeScript types from Zod schemas

 Type mapping
 With Omit<>, Pick<> and Readonly<>

 Custom type mapping

 Runtime and compile type safety
 Type predicate and assertion functions

 Exhaustiveness checking

© ABL - The Problem Solver 3



Free
Course
Coupon

 Coupon code: REACT-BERLIN-22

 Link: https://bit.ly/REACT-BERLIN-22

© ABL - The Problem Solver 4

https://bit.ly/REACT-BERLIN-22
https://bit.ly/REACT-BERLIN-22
https://bit.ly/REACT-BERLIN-22


Type it out
by hand?

“Typing it drills it into your brain much better than 
simply copying and pasting it. You're forming new 
neuron pathways. Those pathways are going to 
help you in the future. Help them out now!”

© ABL - The Problem Solver 5



Prerequisites
Install Node & NPM

Install the GitHub repository

© ABL - The Problem Solver 6



Install 
Node.js & NPM

© ABL - The Problem Solver 7

https://nodejs.org/en/
https://git-scm.com/downloads


Following 
Along

 Repo: https://github.com/mauricedb/advanced-react-typescript-2022

 Slides: https://bit.ly/react-ts-2022

© ABL - The Problem Solver 8

https://github.com/mauricedb/advanced-react-typescript-2022
https://bit.ly/react-ts-2022
https://github.com/mauricedb/advanced-react-typescript-2022/commit/5efae7c297da538c958024206739b03e56380402


The changes

© ABL - The Problem Solver 9

https://github.com/mauricedb/advanced-react-typescript-2022/commits/main


Clone the 
GitHub 
Repository

© ABL - The Problem Solver 10

https://github.com/mauricedb/advanced-react-typescript-2022


Install NPM 
Packages

© ABL - The Problem Solver 11



Start branch

© ABL - The Problem Solver 12

 Start with the 00-start branch
 git checkout --track origin/00-start



Start the 
application

© ABL - The Problem Solver 13



The 
application

© ABL - The Problem Solver 14



Compiling the code

© ABL - The Problem Solver 15



Compiling the 
code

 Quite often TypeScript code is not type checked during 
development

 Create React App use Babel

 Next.js uses SWC

© ABL - The Problem Solver 16



package.json

© ABL - The Problem Solver 17

https://github.com/mauricedb/advanced-react-typescript-2022/commit/f4cbb7ad9612240c113d1620c8f450a3f97cfa1a


npm run compile

© ABL - The Problem Solver 18

https://github.com/mauricedb/advanced-react-typescript-2022/commit/f4cbb7ad9612240c113d1620c8f450a3f97cfa1a


React Components 
using TypeScript

© ABL - The Problem Solver 19



Components 
and TypeScript

 React components can be written in different ways
 Named functions or arrow functions

 Just like with ECMAScript

 Create a type to describe the component Props
 Either an interface or a type alias

 Annotate the result as a valid React type
 Or let TypeScript infer the resulting type

 Typing with an arrow function is often easier with React.FC<TProp>
 But doesn’t work well with generic components

© ABL - The Problem Solver 20



alert.tsx

© ABL - The Problem Solver 21

https://github.com/mauricedb/advanced-react-typescript-2022/commit/5efae7c297da538c958024206739b03e56380402


Mutually exclusive 
props

© ABL - The Problem Solver 22



Mutually 
exclusive props

 Sometimes not all combinations of props are allowed
 Two props might be mutually exclusive

 You must pass one of them but not both

 Use an or between multiple prop types
 With an optional “never” to prevent illegal combinations

© ABL - The Problem Solver 23



dual-alert.tsx

© ABL - The Problem Solver 24

https://github.com/mauricedb/advanced-react-typescript-2022/commit/f6c39533e8f217d95a89cbe7cf39388d92b74838


More strict features

© ABL - The Problem Solver 25



More Strict 
Features

 There are many more strict settings not enabled by “strict”
 allowUnreachableCode

 allowUnusedLabels

 exactOptionalPropertyTypes

 noFallthroughCasesInSwitch

 noImplicitOverride

 noImplicitReturns

 noPropertyAccessFromIndexSignature

 noUncheckedIndexedAccess

 noUnusedLocals

 noUnusedParameters

© ABL - The Problem Solver 26



noUnchecked
IndexedAccess

 By default every index from an array is seen as the array element type
 Even if it exceeds the items available and will result in undefined

 Enabling “noUncheckedIndexedAccess” requires you to check the 
element before using

 Or the element is its type or undefined

 Try adding Mushrooms to the Pizza Ai Funghi and observe a runtime 
error 

© ABL - The Problem Solver 27



tsconfig.json

© ABL - The Problem Solver 28

https://github.com/mauricedb/advanced-react-typescript-2022/commit/5512d5e13865b83370f655bd460a62531cd6d571


menu.ts

© ABL - The Problem Solver 29

https://github.com/mauricedb/advanced-react-typescript-2022/commit/5512d5e13865b83370f655bd460a62531cd6d571


Validating data at the 
boundary

© ABL - The Problem Solver 30



Validating 
Data

 The type definitions are used at compile time

 They might not match the runtime behavior
 Specially when doing AJAX requests or reading JSON files

 Try adding Mushrooms to the Pizza Ai Funghi and observe 
another runtime error 

© ABL - The Problem Solver 31



schemas.ts

© ABL - The Problem Solver 32

https://github.com/mauricedb/advanced-react-typescript-2022/commit/7fe43e2f0d224fe0672679a5c252524713069fca


pizza-shop-
data-loader.tsx

© ABL - The Problem Solver 33

https://github.com/mauricedb/advanced-react-typescript-2022/commit/7fe43e2f0d224fe0672679a5c252524713069fca


Inferring TypeScript types

© ABL - The Problem Solver 34



Inferring 
TypeScript 
types

 In many cases TypeScript can infer types from existing objects
 Not just the object shape but also valid keys

 Use the “extends” keyword to limit a generic type argument
 One generic argument can be used to infer a second etc.

© ABL - The Problem Solver 35



configuration.tsx

© ABL - The Problem Solver 36

https://github.com/mauricedb/advanced-react-typescript-2022/commit/96b7c76ff5f45924a568d13be7a5ca83dd968540


Generic React prop types

© ABL - The Problem Solver 37



Generic React 
prop types

 React component prop types can also be generic
 To ensure that various props have matching type definitions

 The generic type can be specified when the component is rendered
 Or will automatically inferred if not

 Very powerful to create reusable, flexible but fully typed components

© ABL - The Problem Solver 38



two-forms.tsx

© ABL - The Problem Solver 39

https://github.com/mauricedb/advanced-react-typescript-2022/commit/76b5c9078b14fe9021516742808f60c53b8e3d82


generic-form.tsx

© ABL - The Problem Solver 40

https://github.com/mauricedb/advanced-react-typescript-2022/commit/76b5c9078b14fe9021516742808f60c53b8e3d82


Deriving component 
prop types

© ABL - The Problem Solver 41



Deriving 
component 
prop types

 Infer a component Prop type 
 Using React.ComponentProps<typeof Component>

 No need to publicly export all those prop definitions
 Just in case they are needed

 Very useful when you want to export the nested component props
 Use type mappings to modify the type as needed

© ABL - The Problem Solver 42



pizza-on-
menu.tsx

© ABL - The Problem Solver 43

https://github.com/mauricedb/advanced-react-typescript-2022/commit/5e4106d5b7998cff1937a0bb7da5609e40336e5e


labeled-
checkbox.tsx

© ABL - The Problem Solver 44

https://github.com/mauricedb/advanced-react-typescript-2022/commit/5e4106d5b7998cff1937a0bb7da5609e40336e5e


Inferring Zod schema 
types

© ABL - The Problem Solver 45



Inferring Types

 Maintaining a Zod schema and a TypeScript interface is tedious
 Both have to be kept in sync

 The TypeScript types can be inferred from the Zod schema
 Using “z.infer<typeof schema>”

© ABL - The Problem Solver 46



types.ts

© ABL - The Problem Solver 47

https://github.com/mauricedb/advanced-react-typescript-2022/commit/a71faae4190a16c4b6ffe6f103740706a7deb9f4


Type mapping with 
Omit<> and/or Pick<>

© ABL - The Problem Solver 48



Type mapping 
with Omit<> 
and/or Pick<>

 Type mapping lets you create a new type based on an existing type
 With one or more modifications

 There are many build in type mappings
 “Omit<T>”: Create a new type by removing one or more pros

 “Pick<T>”: Create a new type with just the specified props

 A type mapping can contain conditional logic to alter a part of the type

© ABL - The Problem Solver 49



types.ts

© ABL - The Problem Solver 50

https://github.com/mauricedb/advanced-react-typescript-2022/commit/36aea672dd2a8c5d86c9d1b3ea5044ddedbc921b


Using Readonly<>

© ABL - The Problem Solver 51



Readonly<T>

 The Readonly<T> mapped type creates a read-only mapped type
 Can’t change properties anymore

 Or use “array.push()” etc.

⚠️ Readonly<T> is not recursive⚠️
 Only the first level of properties becomes read-only

💡Recommended for function arguments to show intent💡
 And AJAX responses etc.

 Place order with Pizza Quattro Formaggi with extra cheese twice 
and notice the price difference 

© ABL - The Problem Solver 52



types.ts

© ABL - The Problem Solver 53

https://github.com/mauricedb/advanced-react-typescript-2022/commit/f027f9bc3e522610a76004f10ccacb984990ae34


pizza-shop.tsx

© ABL - The Problem Solver 54

https://github.com/mauricedb/advanced-react-typescript-2022/commit/f027f9bc3e522610a76004f10ccacb984990ae34


Custom type mapping 
DeepReadonly<>

© ABL - The Problem Solver 55



DeepReadonly<T>

 Make a whole nested object structure read-only
 Recursive mapped types are very powerful

 An improvement over the default “Readonly<T>”

 Source:
https://gist.github.com/basarat/1c2923f91643a16a90de638e76bce0ab

Place order Pizza Margherita twice and notice the price difference 

© ABL - The Problem Solver 56

https://gist.github.com/basarat/1c2923f91643a16a90de638e76bce0ab


types.ts

© ABL - The Problem Solver 57

https://github.com/mauricedb/advanced-react-typescript-2022/commit/ef8bb60f604b9a70e4c138a7690301abf8e94111


menu.ts

© ABL - The Problem Solver 58

https://github.com/mauricedb/advanced-react-typescript-2022/commit/ef8bb60f604b9a70e4c138a7690301abf8e94111


pizza-shop.tsx

© ABL - The Problem Solver 59

https://github.com/mauricedb/advanced-react-typescript-2022/commit/ef8bb60f604b9a70e4c138a7690301abf8e94111


ordered-pizza.tsx

© ABL - The Problem Solver 60

https://github.com/mauricedb/advanced-react-typescript-2022/commit/ef8bb60f604b9a70e4c138a7690301abf8e94111


Displaying types

© ABL - The Problem Solver 61



Displaying 
Types

 A disadvantage of mapped types is that the type definition in 
tooltips becomes hard to read

 It shows how a type is constructed instead of the resulting type

 The “Resolve<T>” turns this into the resulting type instead
 Source:

https://effectivetypescript.com/2022/02/25/gentips-4-display/

© ABL - The Problem Solver 62

https://effectivetypescript.com/2022/02/25/gentips-4-display/


types.ts

© ABL - The Problem Solver 63

https://github.com/mauricedb/advanced-react-typescript-2022/commit/14088eb0a43f0e0abde72a4f29e78640dbeafa35


types.ts

© ABL - The Problem Solver 64

https://github.com/mauricedb/advanced-react-typescript-2022/commit/14088eb0a43f0e0abde72a4f29e78640dbeafa35


Type Predicate Functions

© ABL - The Problem Solver 65



Type 
Predicate 
Functions

 Often a TypeScript cast is used when types don’t quite line up
 But that is just silencing the compiler

 ⚠️ Casting via “unknown” will even allow any (invalid) type cast ⚠️

 There is no runtime checking or guarantee 

 A type predicate can do a cast in a runtime safe manner
 💡Checks both at runtime and compile time💡

 A function that returns a “boolean” to indicate if the type matches

© ABL - The Problem Solver 66



types.ts

© ABL - The Problem Solver 67

https://github.com/mauricedb/advanced-react-typescript-2022/commit/ab264bf3ba8121ecd2002f5cce635752b3c16e1c


item-on-sale.tsx

© ABL - The Problem Solver 68

https://github.com/mauricedb/advanced-react-typescript-2022/commit/ab264bf3ba8121ecd2002f5cce635752b3c16e1c


Type Assertion Functions

© ABL - The Problem Solver 69



Type 
Assertion 
Functions

 Type assertion functions can be even easier
 Throw an error if the type doesn’t match

 Often a better alternative then a cast
 The code will not continue if the assumption is wrong

© ABL - The Problem Solver 70



types.ts

© ABL - The Problem Solver 71

https://github.com/mauricedb/advanced-react-typescript-2022/commit/2555ade6d090f4d4c7d70477ab653966f9358c27


item-on-sale.tsx

© ABL - The Problem Solver 72

https://github.com/mauricedb/advanced-react-typescript-2022/commit/2555ade6d090f4d4c7d70477ab653966f9358c27


Exhaustiveness Checking

© ABL - The Problem Solver 73



Exhaustiveness 
Checking

 The TypeScript compiler doesn’t tell us if every case is provided
 It’s easy to forget to add a switch case when an enumeration is expanded

 The “never” type is a great way to make sure 
 A compile error if the default case can be reached

 💡Make sure to add an exception or error logging at runtime💡

© ABL - The Problem Solver 74



types.ts

© ABL - The Problem Solver 75

https://github.com/mauricedb/advanced-react-typescript-2022/commit/e657d0d362e91b37c7680d22ef70044143ed188b


types.ts

© ABL - The Problem Solver 76

https://github.com/mauricedb/advanced-react-typescript-2022/commit/e657d0d362e91b37c7680d22ef70044143ed188b


item-on-sale.tsx

© ABL - The Problem Solver 77

https://github.com/mauricedb/advanced-react-typescript-2022/commit/e657d0d362e91b37c7680d22ef70044143ed188b


Conclusion

 TypeScript’s strict settings help catch many errors 
 Make sure to turn on the additional strict features as well

 TypeScript offers a lot of features for React component props
 Infer or mutate prop types and detect invalid combinations of values

 Validate all data at boundaries
 Not just from the user, also from API’s

 Use mapped types to create new types
 The possibilities are almost endless

 Use type predicates and assertions both at compile and run-time
 Instead of just casting at compile time

 Enable exhaustiveness checking with the “never” type
 Make sure to log unexpected cases at runtime

© ABL - The Problem Solver 78



Maurice de Beijer

@mauricedb

maurice.de.beijer
@gmail.com

© ABL - The Problem Solver 79

https://twitter.com/MauriceDB
mailto:maurice.de.beijer@gmail.com

