.POWERED BY -inf Q Upp ort

Solid Innovat

Mastering React Server Components
Unlocking the Future of React Development

Maurice de Beijer
@mauricedb

« Microsoft

_ VALY Most Valuable
Professional

Maurice de Beijer

The Problem Solver
Microsoft MVP

Freelance developer/instructor

* Currently at https://someday.com/

« Twitter: @mauricedb

* Web: http://www.TheProblemSolver.nl

* E-mail: maurice.de.beijer@gmail.com

© ABL - The Problem Solver

https://someday.com/
https://twitter.com/MauriceDB
http://www.theproblemsolver.nl/
mailto:maurice.de.beijer@gmail.com
http://www.theproblemsolver.nl/

- What are React Server Components and why would you care?

* Turning a React Client Component into a React Server Component
* Using Next.js and the App Router

- Updates and caching with React Server Components

* Querying the database from a React Server Component

* Suspense & React Server Components

* React Server Components and streaming

* Which components are really React Server Components?

* Using React Server Actions

© ABL - The Problem Solver

_ “Typing it drills it into your brain much better than
Type it out simply copying and pasting it. You're forming new
by hand? neuron pathways. Those pathways are going to
help you in the future. Help them out now!”

© ABL - The Problem Solver

Prerequisites

Install Node & NPM
Install the GitHub repository

© ABL - The Problem Solver

Install

Node.js & NPM

v —
@ Nodejs ® + o 3 4 Git - Downloads X +

. &« C {Y & git-scm.com/downloads
» 0@ :

C {t @& nodejs.org/en [4

nede O git

Search entire site
HOME ABOUT DOWNLOADS DOCS GET INVOLVED SECURITY CERTIFICATION NEWS

l Downloads

@ macos &% Windows

P::‘. Linux/Unix
Node.js” is an open-source, cross-platform JavaScript runtime environment.

Older releases are available and the Git source
repository is on GitHub

Download for Windows (x64)

18.18.0 LTS 20.8.0 Current GUI Clients

Recommended For Most Users Latest Features Git comes with built-in GUI tools (git-gui, gitk),
but there are several third-party tools for users

looking for a platform-specific experience

Other Downloads| Changelog| APl Docs Other Downloads| Changelog| APl Docs
View GUI Clients —

For information about supported releases, see the release schedule.
22 Windows PowerShell

PS C:\Users\mauri> node
v18.18.0

PS C:\Users\mauri> git

git version 2.41.8.windows.1
PS C:\Users\mauri> npm
16.1.8

© ABL - The Problem Solver

est source Release
2.38.0

Release Notes (2022-10-02)

Download for Windows

Logos

Various Git logos in PNG (bitmap) and EPS
(vector) formats are available for use in online
and print projects.

View Logos —

https://git-scm.com/downloads
https://nodejs.org/

) File Edit Selection View Go Run Terminal Help

page.tsx page.tsx A routets M X

go | 1 author (You)
import { saveMovie } from '@/server/save-movie'
import { Movie } from '@prisma/client’
import { NextRequest, NextResponse } from 'next/server'

export async function PUT(request: NextRequest) {
I

try {
const movie = (await request.json()) as Movie

1
2
3
4
5
6
7
8
9

await saveMovie(movie

return new NextResponse
status: g
}
[] o v N
} catch (error) {
O OWI l I console.error(error
return new NextResponse
status: g

a\[e]gle

* Repo: https://github.com/mauricedb/bitbash-rsc-2024

- Slides: https://bit.ly/bitbash-rsc-2024

© ABL - The Problem Solver

https://github.com/mauricedb/bitbash-rsc-2024
https://bit.ly/bitbash-rsc-2024
https://github.com/mauricedb/bitbash-rsc-2024/blob/main/src/app/api/movies/%5Bid%5D/route.ts
https://bit.ly/bitbash-rsc-2024

X

2 windows PowerShell F

PS C:\Repos> npx create-next-app@latest react-berlin-2023-ws
Need to install the following packages:
create—-next-app@ld.o.3

Ok to proceed? (y)

Would you Llike to use ? No

Would you Llike to use ? No

Would you Llike to use ? No

Would you Llike to use T No

Would you like to use ? (recommended) No

Would you like to customize the default (@/*)z Yes
Creating a new Next.js app in c

Using npm.

Initializing project with template: app-tw

Installing dependencies:

Create a new
Next.|s app

added 332 packages, and audited 333 packages in 2us

117 packages are looking for funding
run ‘npm fund* for details

found vulnerabilities
Initialized a git repository.

Created react-berlin-2023-ws at C:\Repos\react-berlin-2023-ws

PS C:\Repos>

© ABL - The Problem Solver

https://github.com/mauricedb/bitbash-rsc-2024

Adding Shadcn

support

2 windows Powershell * +

Would you like to use TypeScript (recommended)? no
Which style would you like to use? » Default

Which color would you like to use as base

color? Slate

Where is your global CSS file? src/app/globals.css
Would you like to use CSS variables for colors? no

Where is your tailwind.config.js located?
Configure the import alias for components:
Configure the import alias for utils:

Are you using React Server Components?

tailwind.config.ts
@/components
@/Llib/utils
no

Write configuration to components.json. Proceed? yes

Writing components. json...
Initializing project...
Installing dependencies...

PS C:\Repos\react-berlin-2023-ws>

© ABL - The Problem Solver

10

https://github.com/mauricedb/bitbash-rsc-2024

Adding Shadcn

components

2 windows Powershell x +

PS C:\Repos\react-berlin-2023-ws> npx shadcn-ui@latest add
command dialog form input label popover textarea toast
Done.

PS C:\Repos\react-berlin-2023-ws>

© ABL - The Problem Solver

|

button

card

11

https://github.com/mauricedb/bitbash-rsc-2024

v Commits - mauricedb/bitbash-+ X + = (]

< C m 2% github.com/mauricedb/bitbash-rsc-2024/commits/main/ Cx ¥ B B O =0 o

L]
= Q @ mauricedb / bitbash-rsc-2024 & Q + - @ n s o

<> Code (2) Issues ') Pullrequests (5) Actions [Projects [J Wiki 3 Settings

Commits

¥ main ~ Ax All users ~ B Alltime ~

-0~ Commits on Jan 12, 2024

Calling Server Actions directly
o mauricedb committed 5 days ago

Calling Server Actions From a <form /= s
beb3sfa (0 <>

@ mauriceds committed 5 days ago

I | l e ‘ | l a l I e S Loading the genres on the server L
21e623¢ (D <>
@ mauricedb committed 5 days ago

Using an RSC as a child of a client component

@ mauriceds committed 5 days ago

Site layout as an RSC

@ mauricedb committed 5 days ago

Suspense & RSC pages
@ mauriceds committed 5 days ago

Prevent over fetching
s2ciabe (D <>

@ mauricedb committed 5 days ago

Querying the database from a RSC cane

©

o

@ mauriceds committed 5 days ago

Updates and caching ss098ca (0 <>

@ mauricedb committed 5 days ago

Turning a React Client Component into a Server Component R
CELTELN (W

o mauricedb committed 3 days ago

Do or Do Not.
There Is No Try.!

© ABL - The Problem Solver

https://github.com/mauricedb/bitbash-rsc-2024/commits/main/

Clone the
GitHub

Repository

2 wWindows PowerShell X +

Ps C:\demos> git clone https://github.com/mauricedb/bitbash-rsc-2624.git

Cloning into '"bitbash-rsc-2824'...

remote: Enumerating objects: 227, done.

remote: Counting objects: 180% (227/227), done.

remote: Compressing objects: 100% (125/125), done.

Receiving objects: 188% (227/227)sed 227 (delta 86), pack-reused @Receiving objects: 91% (207/227)
Receiving objects: 1@e% (227/227), 1.e4 MiB | 6.83 MiB/s, done.

Resolving deltas: 100% (86/86), done.

PS C:\demos> cd .\bitbash-rsc-2824\

PS C:\demos\bitbash-rsc-20824>

© ABL - The Problem Solver

13

https://github.com/mauricedb/bitbash-rsc-2024

Install NPM
Packages

+ -~ 0 X

2 wWindows PowerShell X

PS C:\demos\bitbash-rsc-2024> npm install

> react-berlin-2023-ws@®.1.0 postinstall
> prisma migrate dev --name init

SQLite database dev.db created at file:./dev.db
Applying migration ‘28231206113326_init"

The following migration(s) have been applied:

migrations/
[208231206113326_1init/
L~ migration.sql

Generated Prisma Client (v5.6.8) in 59ms

Running seed command ‘ts-node —-compiler-options {"module”:"CommonJS"} prisma/seed.ts"

The seed command has been executed.

Run the following to update
npm i --save-dev prisma@latest
npm i @prisma/client@latest

added 419 packages, and audited 420 packages in 19s

122 packages are looking for funding
run ‘npm fund' for details

found vulnerabilities
PS C:\demos\bitbash-rsc-202u>

© ABL - The Problem Solver

https://github.com/mauricedb/bitbash-rsc-2024

Start branch

- Start with the 00-start branch
- git checkout --track origin/00-start

© ABL - The Problem Solver

15

Start the

application

>

PS

=

= n

© ABL - The Problem Solver

npm config get registry X +

C:\demos\bitbash-rsc-2024> npm run dev

eact-berlin-2023-ws@e.1.8 dev
ext dev

- Local: http://localhost: 360080
- Environments: .env

Ready in 2.4s

Compiling /

Compiled / in 4.1s (843 modules)
Compiled in 529ms (389 modules)
Compiled /movies in 313ms (8u® modules)
Compiled /genres in 301ms (851 modules)

16

https://github.com/mauricedb/bitbash-rsc-2024

X &
Server/Client

o localhost:3000
@ localhost:3000
Genres

C M

&
Movies by genre...

v

Bitbash Movies

HOME AGENDA

N

14
I

JARe02s

il v
‘ 1060 u

The
application

T e

Do or Do Not.
There Is No Try.
© ABL - The Problem Solver

http://localhost:3000/

What are React Server
Components?

eeeeeeeeeeeeeeeeeeeee

* React Server Components (RSC) only execute on the server
* Traditionally React components always execute in the browser

* The server can even be a build server instead of a runtime server

React Server » RSC are not the same as Server Side Rendering

+ With SSR components are executed both on the client and server

Components

- Applications are a combination of server and client components

* The result: The back and front-end code are more integrated
* Leading to better type safety ©

© ABL - The Problem Solver 19

Before RSC

- e e —— = = —— — — — -— o] it i P

&QJ

PllQO\thV\

OV\QS Ltstj @OV\Q betall%
Movie CQPJJ (Mowe Edu’CotJ

——
E >

I Server)
N -

o -

[N o\v?go\‘tbn }

/_—W(*—\f@'\

Rate Movie

— e ————

Vs N\
i Clent
%4 ~

— e —— ——
LI UM U M T —————

NN
AN\

_—e— — — — ————

© ABL - The Problem Solver

20

Apphca‘t‘.o»«

Movies List Movie Details !
LT P i r |

— = .

Movie Card Movie Editor | !

N b !
Rote Movie T |
" Scwe_r’, X

Server Side

Rendering

/

i i

i

© ABL - The Problem Solver

With RSC

- e e —— = = —— — — — -— o] it i P

&QJ

plnca‘tuon

Movies Lns‘tj @owe De_‘tml%}
Movie CO\PJJ (Mo\/\e Edu’CotJ

——
E >

I Server)
N -

o -

[N o\v?godﬁon }

r—\f—\fa\

Rate Movie

— e ————

Vs N\
i Clent
%4 ~

— e —— ——
LI UM U M T —————

NN
AN\

_—e— — — — ————

© ABL - The Problem Solver

22

React Server

Components

* Server components can be asynchronous
- Great to load data from some API

» Server components render just once
* No re-rendering with state changes or event handling

* The server component code is not send to the browser
- Can safely use secure API key’s etc.

« Smaller bundle sizes

& React Server Components require TypeScript 5.1 =

© ABL - The Problem Solver

23

React Server

Component

genre-loadertsx X

You, 2 weeks ago | 1 author (You)
import { prisma } from '@/lib/db’
import { GenreSelector } from '@/components/genre-selector’

export async function GenrelLoader() f{
const genres = await prisma.genre.findMany(

orderBy: { name: 'asc' },
)

return <GenreSelector genres={genres} />

S W OO N WU P~ WK =

Y

}

© ABL - The Problem Solver

24

https://github.com/mauricedb/bitbash-rsc-2024/blob/main/src/components/genre-loader.tsx

React Client

Components

- Server components can render both server and client components
* Client components can only render other client components

- Adding 'use client’ to the top of a component makes it a client
component
« Used as a directive for the bundler to include this in the client JS bundle

* A client component is still executed on the server as part of SSR
* When using Next.js

movie-form.tsx X

'use client’

import { zodResolver } from '@hookform/resolvers/zod’
import as z from 'zod’

© ABL - The Problem Solver

25

https://github.com/mauricedb/bitbash-rsc-2024/blob/main/src/components/movie-form.tsx

Turning a React
Client Component into a
Server Component

eeeeeeeeeeeeeeeeeeeee

Client Component

to
Server Component

* React Server Components normally perform better
« Only render once on the server

* The code doesn’t need to be shipped to the browser

- Can be async and await data to be fetched
* No need for a render/effect/re-render cycle in the browser

- Components that don’t need client capabilities should be RSC's
- State, effects, browser API’s etc. are client requirements

© ABL - The Problem Solver

27

movies

[page.tsx

page.tsx

movie-form.tsx

export default async function MoviesPage({ searchParams:
-

async function fetchMovies() {

genre

DR G o

}: Props)

const url = genre ? ${genre} : '/api/movies’

const rsp = await fetch ${url}
const movies = await rsp.json
return movies as Movie

const movies = await fetchMovies()

© ABL - The Problem Solver

28

https://github.com/mauricedb/bitbash-rsc-2024/commit/93be3ccd37ba5a750a4a9229682166928a313e28

movie-card.tsx

page.tsx

© ABL - The Problem Solver

movie-card.tsx M X
‘use client’

import Image from 'next/image’
import Link from 'next/link’

29

https://github.com/mauricedb/bitbash-rsc-2024/commit/93be3ccd37ba5a750a4a9229682166928a313e28

movies/[id]

[page.tsx

page.tsx

12
13
14
15
16
17
18
19

movie-card.tsx page.tsx M movie-form.tsx

const MoviePage: F(C<Props> = async ({ params:
async function fetchMovie() {

const rsp = await fetch

const movie = await rsp.json

return movie as Movie

const movie = await fetchMovie()

© ABL - The Problem Solver

id

30

https://github.com/mauricedb/bitbash-rsc-2024/commit/93be3ccd37ba5a750a4a9229682166928a313e28

movie-form.tsx

Do or Do Not.
There Is No Try.

page.tsx movie-card.tsx page.tsx movie-form.tsx M X

You, 5 minutes ago | 1 author (You)
‘use client’

import { zodResolver } from '@hookform/resolvers/zod’
import as z from "zod'

© ABL - The Problem Solver

31

https://github.com/mauricedb/bitbash-rsc-2024/commit/93be3ccd37ba5a750a4a9229682166928a313e28

Next.js and the
App Router

eeeeeeeeeeeeeeeeeeeee

Next.js and
the App

Router

* React is no longer just a client side library
* We need additional server side capabilities

* As well as additional code bundling options

* Next.js is the best production option available
« Shopify Hydrogen is also an option
« = Remix 2 doesn’t support RSC yet =

* There are also more experimental options
« Waku from Daishi Kato

« React Server Components Demo from the React team

© ABL - The Problem Solver

33

https://waku.gg/
https://github.com/reactjs/server-components-demo

Rendering RSC's

- React Server Components are only rendered on the server
 And shipped to the client as a JSON like structure

« The React Server Component Payload

* The client then injects these JSON objects into the React tree
« Where it would previously have rendered these components themself

- = React already used a 2 step process =
« Components render to a virtual DOM
- Just a series of JavaScript objects
* Reconciliation maps the virtual DOM to the browser DOM

* Oran HTML stream in the case or Server Side Rendering

© ABL - The Problem Solver

34

Async transport

* RSC's are streamed asynchronously to the client
* Enables using Suspense boundaries while loading

© ABL - The Problem Solver

35

Code bundling

» Multiple JavaScript bundles have to be made
* The client and server have different code bundles

- Server Component code is never executed on the client
- Can use react-server-dom-webpack or a similar package

© ABL - The Problem Solver

36

Updates and caching

eeeeeeeeeeeeeeeeeeeee

Updates and

caching

* Next.js does a lot of optimizations using caching
* Both on the server and client

* The Next.js uses a Data Cache and Full Router Cache on the server

- Use export const dynamic = 'force-dynamic’ to make sure data on the
server isn't cached

 Can also be controlled at the fetch() level

 The Next.js uses a Router Cache on the client
 Dynamically rendered routes are purged after 30 seconds

- Call router.refresh() to immediately purge the cache
* Make sure to use the router from 'next/navigation’

© ABL - The Problem Solver

38

https://nextjs.org/docs/app/building-your-application/caching

movies/[id]
[page.tsx

movie-form.tsx M page.tsx page.tsx

6 type Props = {
7 params: {

8 id: string
9 }

}

export const dynamic = 'force-dynamic'’

const MoviePage: F(<Props> = async ({ params: { id } }) = {
15 async function fetchMovie() {
16 const rsp = await fetch ${id}
17 const movie = await rsp.json

return movie as Movie

© ABL - The Problem Solver

https://github.com/mauricedb/bitbash-rsc-2024/commit/35998ca8cdec69f4ac99d3437215e7c79607492c

movie-
form.tsx

X

movie-form.tsx M page.tsx page.tsx

42 export const MovieForm: F(C<Props> = ({ initialMovie }) = {

43 const { toast } = useToast()

L4 const router = useRouter()

45

46 const onSubmit = async (movie: Movie) = 1
'y try

48 awalt saveMovie(movie)

49

50 router.refresh()

51

52 toast({

53 title: 'Success’,

54 description: 'Move updated’,

55

© ABL - The Problem Solver

https://github.com/mauricedb/bitbash-rsc-2024/commit/35998ca8cdec69f4ac99d3437215e7c79607492c

movies

[page.tsx

Do or Do Not.
There Is No Try.

movie-form.tsx M page.tsx
type Props =

searchParams:
genre?: stri

export const dyn

export default async function MoviesPage({ searchParams: genre }:

async function
const url =
const rsp =
const movies

page.tsx

ng

amic = 'force-dynamic’

fetchMovies() {
genre ?
await fetch

= await rsp.json

return movies as Movie

© ABL - The Problem Solver

${genre}

${url}

'/api/movies’

D P ©

Props) {

41

https://github.com/mauricedb/bitbash-rsc-2024/commit/35998ca8cdec69f4ac99d3437215e7c79607492c

Querying the database
from an RSC

eeeeeeeeeeeeeeeeeeeee

Querying the

database from
an RSC

 Because an RSC only runs on the server we can use server side code
 Query the DB using Prisma directly

* It's save to use secrets like database connection strings

* Never executed in the browser
* Leads to smaller JavaScript bundle sizes

© ABL - The Problem Solver

43

page.tsx M X page.tsx M route.ts M SN Q ©

14 async function getMovies(genreld: string | undefined) {

15 const orderBy: Prisma.MovieOrderByWithRelationInput = {
16 voteAverage: 'desc',
17 } as const
18
19 > if (genreld) {
: 30 } else {
mOVIeS 31 const movies = await prisma.movie.findMany({

32 orderBy,
33 }

[page.tsx Y _
35 return movies
36 }
37 1
38+
39 export default async function MoviesPage({ searchParams: genre }: Props) {
40 const movies = await getMovies(genre)
41
42 return (

43 <main className="flex-1 space-y-4 p-8 pt-6">

© ABL - The Problem Solver

https://github.com/mauricedb/bitbash-rsc-2024/commit/fddf6a014437dd51831856e8a8cfb5078d42ac09

movies/[id]
[page.tsx

page.tsx page.tsx M X route.ts M

12 export const dynamic = 'force-dynamic'

13

14 async function getMovie(id: string) {

15 const movie = await prisma.movie.findFirstOrThrow(
16 where: { id: +id },

17)

18

19 return movie

20 }

21

22 const MoviePage: FC<Props> = async ({ params: { id } }) = {
23 const movie = await getMovie(id)

24

25 if ('movie) 1

© ABL - The Problem Solver

https://github.com/mauricedb/bitbash-rsc-2024/commit/fddf6a014437dd51831856e8a8cfb5078d42ac09

File Edit Selection View Go Run Terminal Help

routets M X

page.tsx page.tsx

You, 4 days ago | 1 author (You)

1 import { saveMovie } from '@/server/save-movie’
2 import { Movie } from '@prisma/client’
3 import { NextRequest, NextResponse } from 'next/server’
A
5 export async function PUT(request: NextRequest) {
6 try {
. . . 7 const movie = (await request.json()) as Movie
api/movies/[id] :
9 await saveMovie(movie
[route.ts 10
11 return new NextResponse y 1
i 12 status: ,
13+ }
14 } catch (error) {
¥ 15 console.error(error
16
17 return new NextResponse , 1
18 status: -
19 }
20 }

Do or Do Not. 21

¥ There Is No Try.

© ABL - The Problem Solver

https://github.com/mauricedb/bitbash-rsc-2024/commit/52c1abed14a6e686f57bc5137783773901e0a19e

Prevent over fetching

eeeeeeeeeeeeeeeeeeeee

Prevent over

fetching

» Colocation of DB queries with components enables more optimizations
* Fetch exactly the right amount of data

* No more shared REST queries

© ABL - The Problem Solver

48

pagetsx M X

~ SOURCE CONTROL

13 type MovieForCard = ComponentProps<typeof MovieCard>['movie'] Prevent over fetching
14 L
15 export const dynamic = 'force-dynamic’ ¥iGommi ‘vo 3&
16 ; ; S
17 async function getMovies(genreld: string | undefined): Promise<MovieForCard[1> { o EE
18 const orderBy: Prisma.MovieOrderByWithRelationInput = {
19 voteAverage: 'desc’,
20 } as const
21
22 const select = {
23 id: ’

- 24 title: ,

l I lOVIeS 25 overview: ,
26 backdropPath: g
27 voteAverage: ’
28 voteCount: 0
paqe tSX 29 } satisfies Prisma.MovieSelect o
. 30
: 314+ if (genreld) {
32 const genre = await prisma.genre.findFirst({
33 where: { id: +genreld 1},
34 include: {
35 movies:
36 orderBy,
37 select,
38 ! > REPOSITORIES
39 L }' > COMMITS
> BRANCHES

TERMINAL PR

OUTPUT DEBUG

PORTS ~ AZURE GITLENS COMMENTS +v o~ X

> REMOTES
> STASHES
> TAGS

> WORKTREES

- wait compiling...
- event compiled client and server successfully in 319 ms (736 modules)

Do or Do Not.
There Is No Try.

© ABL - The Problem Solver

https://github.com/mauricedb/react-berlin-2023-ws/commit/eba13cf657a8712e41a05c8bd4a81ec516ada2e5

Break time

© ABL - The Problem Solver

Suspense & RSC pages

eeeeeeeeeeeeeeeeeeeee

Suspense &

RSC pages

* React Server Components are suspended until they resolve
 Can be controlled with <Suspense /> boundaries

* Next.js makes it easy to suspend when rendering an async page
- Add a loading.tsx

 They can be nested and the closest loading component will be used

© ABL - The Problem Solver

52

movies
[loading.tsx

page.isx
import { RotateCw } from 'lucide-react’

export default function Loading() {
return (
<div
role="status"
aria-label="Loading"
className="absolute left-1/2 top-2/4 -translate-x-1/2 -translate-y-1/2"

1
2
3
4
5
6
7
8
9

=
S

<RotateCw className="animate-spin text-foreground/40" size="5rem" />
</div>
)

=
=

© ABL - The Problem Solver

53

https://github.com/mauricedb/bitbash-rsc-2024/commit/50f1083cc06c223d0ae84579dbdfa2cf5fde0bca

page.tsx page.tsx

async function getMovies(genreld: string | undefined): Promise<MovieForCard[]> {
const orderBy: Prisma.MovieOrderByWithRelationInput = {
voteAverage: ‘desc’,

} as const

mOVieS Cozz':c select

?
title:

[page.tsx

backdropPath:
voteAverage: ;

voteCount: 7
satisfies Prisma.MovieSelect

await sleep(

© ABL - The Problem Solver

https://github.com/mauricedb/bitbash-rsc-2024/commit/50f1083cc06c223d0ae84579dbdfa2cf5fde0bca

movies/[id]

[page.tsx

Do or Do Not.

There Is No Try.

page.tsx page.tsx

15 async function getMovie(id: string) {

16 const movie = await prisma.movie.findFirstOrThrow(
17 where: { id: +id },

18)

19

20 await sleep(

21

22 return movie

23

© ABL - The Problem Solver

55

https://github.com/mauricedb/bitbash-rsc-2024/commit/50f1083cc06c223d0ae84579dbdfa2cf5fde0bca

RSC and streaming

eeeeeeeeeeeeeeeeeeeee

RSC and

streaming

 Async React Server Components are streamed to the browser
* Using the React Server Component Payload

* On the client they are suspended until the component resolves

» Server action responses can also stream components back
- After a revalidatePath() or a revalidateTag()

© ABL - The Problem Solver

57

RSC Payload

tHL["/_next/static/css/app/layout.css?v=1695461372573",{"as": "style"}]
:["$a1",["development”,[[["",{"children":["movies",{"children":[["id","238","d"],{"children":["__PAGE__",
:I{"id":"(app-pages-browser)/./src/components/shopping-cart.tsx","chunks":["app/layout:static/chunks/app/la
:I{"id":"(app-pages-browser)/./src/components/main-nav.tsx","chunks":["app/layout:static/chunks/app/layout.
:I{"id":"(app-pages-browser)/./node_modules/next/dist/client/components/layout-router.js","chunks":["app-paj
:I{"id":"(app-pages-browser)/./node_modules/next/dist/client/components/render-from-template-context.js","c
:I{"id":"(app-pages-browser)/./src/components/ui/toaster.tsx
:"$undefined"”

now

,"chunks":["app/layout:static/chunks/app/layou

["$","html", ,1"lang":"en","children”:["$", "body", y1"className”:"min-h-screen bg-background a

[[" ,"0",{"charSet": "utf-8" :|'[||$u'lltit1ell’u1u’ "children":"TS Congress”],[u$u,nmetau’u2u' "name"

non

:Ii“id":"(app—pages—browser)/./src/components/movie—form.tsx , "chunks":["app/movies/[id]/page:static/chunks

"id":"8ee@c4224708db417bfe9cefcale38c119b06524", "bound™ : }

:["$","main", y{"className":"flex-1 space-y-4 p-8 pt-6","children”:[["$","h2", y1"className": "text-3x
:I{"id":"(app-pages-browser)/./src/components/genre-selector.tsx","chunks":["app/layout:static/chunks/app/14
[, "$LF", yi"genres”:[{"id":28, "name" :"Action"},{"id":12, "name”: "Adventure"},{"id":16,"name" : "Animati

© ABL - The Problem Solver

58

Site layout as an RSC

eeeeeeeeeeeeeeeeeeeee

Site layout as

an RSC

- A layout.tsx is typically a React Server Component
* But can be a client component if required

- Render server and/or client components as needed

© ABL - The Problem Solver

60

layout.tsx

layout.tsx M X main-nav.tsx shopping-cart.tsx genre-selector.tsx
L 1 1
import './globals.css

import type { PropsWithChildren } from 'react’
import type { Metadata } from 'next’
import { Inter } from 'next/font/google’

© ABL - The Problem Solver

61

https://github.com/mauricedb/bitbash-rsc-2024/commit/31906a88b4731ca5657dced1ece47b08f094209b

main-nav.tsx

layout.tsx M main-nav.tsx M X shopping-cart.tsx M genre-selector.tsx M

‘use client’

import Link from 'next/link’
import { usePathname, useSearchParams } from 'next/navigation'’

import { cn } from '@/lib/utils’

import { Button } from '@/components/ui/button’
import { useShoppingCart } from './shopping-cart'’
import { GenreSelector } from './genre-selector’

O 00O OO0 B~ W N

11 export function MainNav() {

12 const { itemCount, checkout } = useShoppingCart()
13 const pathname = usePathname()

144 const searchParams = useSearchParams()

const hasGenreParam = searchParams ?. has('genre')

© ABL - The Problem Solver

https://github.com/mauricedb/bitbash-rsc-2024/commit/31906a88b4731ca5657dced1ece47b08f094209b

shopping-cart.tsx

layout.tsx M main-nav.tsx M shopping-carttsx M X genre-selector.tsx M

‘use client’

import {
ComponentProps,
PropsWithChildren,
createContext,
useContext,
useState,

} from 'react'’

O oo NO U P~ WN =

import { CheckoutDialog } from '@/components/checkout-dialog’

13 type ShoppingCartMovies = ComponentProps<typeof CheckoutDialog>['movies’]
type ShoppingCartMovie = ShoppingCartMovies[0]

const ShoppingCartContext = createContext({

© ABL - The Problem Solver

https://github.com/mauricedb/bitbash-rsc-2024/commit/31906a88b4731ca5657dced1ece47b08f094209b

layout.tsx M main-nav.tsx M shopping-cart.tsx M genre-selectortsx M X OV C)]

1 'use client’
p
3 import { useEffect, useState } from 'react’
[A import { Check, ChevronsUpDown } from 'lucide-react’
5 import { useRouter, useSearchParams } from 'next/navigation’
6 import { Genre } from '@prisma/client’
7
genre_selector_tsx 8 import { cn } from '@/lib/utils’
9 import { Button } from '@/components/ui/button’
10 import { Command, CommandGroup, CommandItem } from '@/components/ui/command’
11 import {
12 Popover,
13 PopoverContent,
14 PopoverTrigger,

} from '@/components/ui/popover’

export function GenreSelector() {

‘ Do or Do Not.
¥ There Is No Try.

© ABL - The Problem Solver

https://github.com/mauricedb/bitbash-rsc-2024/commit/31906a88b4731ca5657dced1ece47b08f094209b

What is a server
component?

eeeeeeeeeeeeeeeeeeeee

Whatis a

server
component?

What is a server component and what is not?
* Client components are marked with 'use client'

But not all other components are server components
« With a component without 'use client’ it depends on their parents

If a component is a client component
- Then all components it renders are also client components

w There is no 'use server' for server components =
* The 'use server’ directive exists but is used for Server Actions

* But thereis a server-only NPM package

© ABL - The Problem Solver

66

server-only

* Import the server-only NPM package
 With components that must run on the server

Failed to compile

rver-or-client\child-component.tsx

erverComponentsError:

You're importing a component that needs server-only. That only works in a Server Component but one
of its parents marked with e client”, so it Client Component.

Learn more: https xtj etting-started/react- entials

= tepos\reactadvanced 3 \app\server-or-client\child-component.t

| import 'server-only’

| import { sleep } /lib/utils

3 |

One of these is marked as a client entry with "use client™:

© ABL - The Problem Solver 67

Using an RSC
as a child of a

client
component

* A client component can have a server component as a child
* Aslong as it doesn't render it

- Render the child server component from another server component
¢ And pass it as a children prop into the client component

© ABL - The Problem Solver

68

chilc
com

child-componenttsx M X

parent-component.tsx M page.tsx M

import 'server-only’

import { prisma } from '@/1ib/db’

export async function ChildComponent() {
console.log('Rendering Child Component')
const movie = await prisma.movie.findFirstOrThrow()

ponent.tsx

return (

10 <main className="bg-red-400 p-12">
11 <h2 className="my-6 text-4x1 font-bold">Child Component</h2>
12 <p>imovie.title}</p>

</main>

© ABL - The Problem Solver

https://github.com/mauricedb/bitbash-rsc-2024/commit/5c96728571c7aa47219ce241da5f26ab1c720544

parent-
component.tsx

child-component.tsx M parent-componenttsx M X page.tsx M

1 ‘'use client’

P

3 import { PropsWithChildren } from 'react'’

4

5 export function ParentComponent({ children }: PropswithChildren) {
6 console.log('Rendering Parent Component')
7

8 return (

9 <main className="bg-green-400 p-12">

10 <h2
11 className="my-6 text-4x1 font-bold"
12 onClick={() = console.log('Click")
13 >
14 Parent Component
15 </h2>
16 children
17 </main>
18)
19 1}

© ABL - The Problem Solver

https://github.com/mauricedb/bitbash-rsc-2024/commit/5c96728571c7aa47219ce241da5f26ab1c720544

child-component.tsx M pagetsx M X

parent-component.tsx M

1| import { ChildComponent } from './child-component’

2 import { ParentComponent } from './parent-component’
3

4 export default function ServerOrClientPage() {

. 5 console.log('Rendering Server Or Client Page')
server-or-client :
7 return (
/pagetsx 8 <main className="bg-blue-400 p-12">
9 <h1l className="my-6 text-4x1 font-bold">Server Or Client Page</h1>
i 10 <ParentComponent>
11 <ChildComponent />
12 </ParentComponent>
4 13 </main>

A)

}

Do or Do Not.
¥ There Is No Try.

- The Problem Solver

https://github.com/mauricedb/bitbash-rsc-2024/commit/5c96728571c7aa47219ce241da5f26ab1c720544

Loading the genres on
the server

eeeeeeeeeeeeeeeeeeeee

Loading the

genres on the
server

» Splitting the GenreSelector in a client and a server component
* Client component for interactivity

* Server component for data loading

» The MainNav component still needs to be a client component
* The GenreSelector/Loader can be injected as a prop

© ABL - The Problem Solver

73

genre-selector.tsx

genre-selector.tsx M X site-header.tsx M main-nav.tsx M

17 type Props = {

18 genres: Genrel]

19 }

20

21 export function GenreSelector({ genres }: Props) {
22 const [open, setOpen] = useState()

P const searchParams = useSearchParams()

24 const selectedGenre = searchParams ?.get('genre') 72 "'
25 const { push } = useRouter()

26 const items = genres.map((genre) = ({

27 value: genre.id.toString(),

28 label: genre.name,

29 }))

30

31 return (

32 <Popover open=iopen; onOpenChange={isetOpen;>

© ABL - The Problem Solver

https://github.com/mauricedb/bitbash-rsc-2024/commit/21e623d74a437ab5902cefe2f38e6e285b45e426

genre-loader.tsx

genre-selector.tsx M X site-header.tsx M main-nav.tsx M

1 import 'server-only’

2

3 import { prisma } from '@/lib/db’

4 import { GenreSelector } from './genre-selector’
5 sleep 'a/1lib/utils’

6

7 export async function GenreLoader() {

8

9
10 const genres = await prisma.genre.findMany(
11 orderBy: {
12 name: ‘'asc’,
13 b

)

return <GenreSelector genres={genres} />

}

© ABL - The Problem Solver

https://github.com/mauricedb/bitbash-rsc-2024/commit/21e623d74a437ab5902cefe2f38e6e285b45e426

site-header.tsx

genre SX site-header.tsx X main-nav.tsx

import { MainNav } from '@/components/main-nav’
import { GenrelLoader } from './genre-loader’

export function SiteHeader() {
return (
<header className="sticky top-@ z-40 w-full border-b bg-background">
<div className="container flex h-16">
<MainNav genreSelector-{<GenrelLoader />} />
</div>
</header>
)

1
2
3
4
5
6
7
8
9

[
N RS

© ABL - The Problem Solver

76

https://github.com/mauricedb/bitbash-rsc-2024/commit/21e623d74a437ab5902cefe2f38e6e285b45e426

main-nav.tsx

genre-selector.tsx M site-header.tsx M main-nav.tsx M X

| 'use client'

2

3 import Link from 'next/link'’

4 import { usePathname, useSearchParams } from 'next/navigation’

5 import { ReactNode, Suspense } from 'react’

6 | import { RotateCw } from 'lucide-react’

7

8 import { cn } from '@/lib/utils’

9 import { Button } from '@/components/ui/button’
10 import { useShoppingCart } from './shopping-cart’
11
12 type Props = {

13 genreSelector: ReactNode
14 }
15

[
(@)

export function MainNav({ genreSelector }: Props) {

© ABL - The Problem Solver

https://github.com/mauricedb/bitbash-rsc-2024/commit/21e623d74a437ab5902cefe2f38e6e285b45e426

main-nav.tsx

Do or Do Not.
There Is No Try.

genre-selec site-header.tsx M main-nav.tsx M X

47 <Suspense

48 fallback=

49 <Button

50 variant="outline"

51 className="w-[200px] justify-between text-foreground/60"
52 disabled

53

54 Movies by genre...

55 <ChevronsUpDown className="ml-2 h-4 w-4 shrink-@ opacity-50" />
56 </Button>

57

58

59 genreSelector

60 </Suspense>

© ABL - The Problem Solver

78

https://github.com/mauricedb/bitbash-rsc-2024/commit/21e623d74a437ab5902cefe2f38e6e285b45e426

Calling Server Actions

From a <form />

eeeeeeeeeeeeeeeeeeeee

Calling Server

Actions

* React Server Actions are functions that we can call on the client
* Butthen execute on the server

« Add the 'use server' annotation
» Can be at the top of a file or a single function

* Not related to server components

- Can be passed as the action of a client side <form />
 The forms data is passed as a FormData parameter

- Even works if JavaScript is disabled ©

© ABL - The Problem Solver

8o

genre-form.tsx M X

22 export function GenreForm({ genre }: Props) {

23 const onSubmit = async (formData: FormData) = 1
24 'use server'’
25
26 const genre: Genre =
27 id: +(formData.get('id') as string),
28 name: formData.get('name') as string,
29
genre-form.tsx 30
31 awalt saveGenre(genre
32
33 redirect('/genres'
34 }
35
36 return (
37 <form action={onSubmit} className="mx-auto w-1/2">
38 <Card>
39 <CardHeader>

40 <CardTitle>Edit Movie Genre</CardTitle>

‘ Do or Do Not.
¥ There Is No Try.

© ABL - The Problem Solver

https://github.com/mauricedb/bitbash-rsc-2024/commit/b6b38fa38a358049fbb22bfe1de24aab19353bb6

Calling Server Actions

Directly

eeeeeeeeeeeeeeeeeeeee

Calling Server

Actions

- Can also be called as a normal asynchronous function
 The network request is handled for you

* Optionally use the useTransition() hook
* For feedback while the server action is executing

© ABL - The Problem Solver

83

checkout-shopping-cart.ts

O 00 < O 1 &~ W N =

e S Sy =Y
w N R e

14
15
16
17

J5 next.config.js M

checkout-shopping-cartts M X checkout-dialog.tsx M

'use server’
import { Movie } from '@prisma/client’
type ShoppingCartMovie = Pick<Movie, '1d’ | "title'>

type Cart = {
account: string
customerName: string
movies: ShoppingCartMovie|]

}

export async function checkoutShoppingCart(1
account,
customerName,
movies,
}: cart) {

© ABL - The Problem Solver

https://github.com/mauricedb/bitbash-rsc-2024/commit/8cefb23eb2e1b284ad29844cdd16cf472876cd69

J5 next.config.js M checkout-shopping-cart.ts M checkout-dialog.tsx M X

53 const onSubmit = async (data: CheckoutForm) =
54 try

55 await checkoutShoppingCart({

56 account: data.account,
checkout-dialog.tsx 57 customerName: data.name,

58 movies,

59 1)

60 toast(1

61 title: 'Success’,

62 description: 'Checkout completed’,

63 })

‘ Do or Do Not.
¥ There Is No Try.

© ABL - The Problem Solver

https://github.com/mauricedb/bitbash-rsc-2024/commit/8cefb23eb2e1b284ad29844cdd16cf472876cd69

Recommendations with
React Server Components

eeeeeeeeeeeeeeeeeeeee

Recommendations

- Start with Shared components
« Canrun on the server or client as needed

- Will default to act as Server Components

* Switch to Server only components if needed
* When you need to use server side capabilities

* Only use Client only components when absolutely needed
- Local state or side effects

* Interactivity
* Required browser API’s

* Learn all about the new capabilities of Next.js
* App Router

» Caching

© ABL - The Problem Solver

87

Conclusion

React Server Components are a great new addition to React
* Helps with keeping the client more responsive

- Makes the application architecture easier

Use Next.js and the App Router
 Because you need a server

React Client Components
« Are components with state and interactivity and require ‘use client’

Control caching of React Server Components
- Because Next.js is quite aggressive about caching

React Server Components are streamed
+ And use Suspense boundaries until they are done

Server Actions are a great way to call back into the server
 They also update the invalidated server components on the client

© ABL - The Problem Solver

88

Thank you for joining

Share your thoughts

© ABL - The Problem Solver

https://twitter.com/intent/tweet?text=Mastering%20React%20Server%20Components:%20Unlocking%20the%20Future%20of%20React%20Development%20at%20@bitbashconf%20by%20@mauricedb

	Slide 1
	Slide 2: Mastering React Server Components Unlocking the Future of React Development
	Slide 3
	Slide 4: Topics
	Slide 5: Type it out by hand?
	Slide 6: Prerequisites
	Slide 7: Install Node.js & NPM
	Slide 8: Following Along
	Slide 9: Create a new Next.js app
	Slide 10: Adding Shadcn support
	Slide 11: Adding Shadcn components
	Slide 12: The changes
	Slide 13: Clone the GitHub Repository
	Slide 14: Install NPM Packages
	Slide 15: Start branch
	Slide 16: Start the application
	Slide 17: The application
	Slide 18: What are React Server Components?
	Slide 19: React Server Components
	Slide 20: Before RSC
	Slide 21: Server Side Rendering
	Slide 22: With RSC
	Slide 23: React Server Components
	Slide 24: React Server Component
	Slide 25: React Client Components
	Slide 26: Turning a React Client Component into a Server Component
	Slide 27: Client Component to Server Component
	Slide 28: movies /page.tsx
	Slide 29: movie-card.tsx
	Slide 30: movies/[id] /page.tsx
	Slide 31: movie-form.tsx
	Slide 32: Next.js and the App Router
	Slide 33: Next.js and the App Router
	Slide 34: Rendering RSC’s
	Slide 35: Async transport
	Slide 36: Code bundling
	Slide 37: Updates and caching
	Slide 38: Updates and caching
	Slide 39: movies/[id] /page.tsx
	Slide 40: movie-form.tsx
	Slide 41: movies /page.tsx
	Slide 42: Querying the database from an RSC
	Slide 43: Querying the database from an RSC
	Slide 44: movies /page.tsx
	Slide 45: movies/[id] /page.tsx
	Slide 46: api/movies/[id] /route.ts
	Slide 47: Prevent over fetching
	Slide 48: Prevent over fetching
	Slide 49: movies /page.tsx
	Slide 50: Break time
	Slide 51: Suspense & RSC pages
	Slide 52: Suspense & RSC pages
	Slide 53: movies /loading.tsx
	Slide 54: movies /page.tsx
	Slide 55: movies/[id] /page.tsx
	Slide 56: RSC and streaming
	Slide 57: RSC and streaming
	Slide 58: RSC Payload
	Slide 59: Site layout as an RSC
	Slide 60: Site layout as an RSC
	Slide 61: layout.tsx
	Slide 62: main-nav.tsx
	Slide 63: shopping-cart.tsx
	Slide 64: genre-selector.tsx
	Slide 65: What is a server component?
	Slide 66: What is a server component?
	Slide 67: server-only
	Slide 68: Using an RSC as a child of a client component
	Slide 69: child-component.tsx
	Slide 70: parent-component.tsx
	Slide 71: server-or-client /page.tsx
	Slide 72: Loading the genres on the server
	Slide 73: Loading the genres on the server
	Slide 74: genre-selector.tsx
	Slide 75: genre-loader.tsx
	Slide 76: site-header.tsx
	Slide 77: main-nav.tsx
	Slide 78: main-nav.tsx
	Slide 79: Calling Server Actions
	Slide 80: Calling Server Actions
	Slide 81: genre-form.tsx
	Slide 82: Calling Server Actions
	Slide 83: Calling Server Actions
	Slide 84: checkout-shopping-cart.ts
	Slide 85: checkout-dialog.tsx
	Slide 86: Recommendations with React Server Components
	Slide 87: Recommendations
	Slide 88: Conclusion
	Slide 89: Thank you for joining

