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- What are React Server Components and why would you care?

* Turning a React Client Component into a React Server Component
* Using Next.js and the App Router

- Updates and caching with React Server Components

* Querying the database from a React Server Component

* Suspense & React Server Components

* React Server Components and streaming

* Which components are really React Server Components?

* Using React Server Actions
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_ “Typing it drills it into your brain much better than
Type it out simply copying and pasting it. You're forming new
by hand? neuron pathways. Those pathways are going to
help you in the future. Help them out now!”
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Prerequisites

Install Node & NPM
Install the GitHub repository
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Install

Node.js & NPM

v —
@ Nodejs ® + o 3 4 Git - Downloads X +

. &« C {Y & git-scm.com/downloads
» 0@ :

C {t @& nodejs.org/en [ 4

nede O git

Search entire site
HOME ABOUT DOWNLOADS DOCS GET INVOLVED SECURITY CERTIFICATION NEWS

l Downloads

@ macos &% Windows

P . . . .::‘. Linux/Unix
Node.js” is an open-source, cross-platform JavaScript runtime environment.

Older releases are available and the Git source
repository is on GitHub

Download for Windows (x64)

18.18.0 LTS 20.8.0 Current GUI Clients

Recommended For Most Users Latest Features Git comes with built-in GUI tools (git-gui, gitk),
but there are several third-party tools for users

looking for a platform-specific experience

Other Downloads| Changelog| APl Docs Other Downloads| Changelog| APl Docs
View GUI Clients —

For information about supported releases, see the release schedule.
22 Windows PowerShell

PS C:\Users\mauri> node
v18.18.0

PS C:\Users\mauri> git

git version 2.41.8.windows.1
PS C:\Users\mauri> npm
16.1.8

© ABL - The Problem Solver

est source Release
2.38.0

Release Notes (2022-10-02)

Download for Windows

Logos

Various Git logos in PNG (bitmap) and EPS
(vector) formats are available for use in online
and print projects.

View Logos —


https://git-scm.com/downloads
https://nodejs.org/

) File Edit Selection View Go Run Terminal Help

page.tsx page.tsx A routets M X

go | 1 author (You)
import { saveMovie } from '@/server/save-movie'
import { Movie } from '@prisma/client’
import { NextRequest, NextResponse } from 'next/server'

export async function PUT(request: NextRequest) {
I

try {
const movie = (await request.json()) as Movie

1
2
3
4
5
6
7
8
9

await saveMovie(movie

return new NextResponse
status: g
}
[ ] o v N
} catch (error) {
O OWI l I console.error(error
return new NextResponse
status: g

a\[e]gle

* Repo: https://github.com/mauricedb/bitbash-rsc-2024

- Slides: https://bit.ly/bitbash-rsc-2024

© ABL - The Problem Solver


https://github.com/mauricedb/bitbash-rsc-2024
https://bit.ly/bitbash-rsc-2024
https://github.com/mauricedb/bitbash-rsc-2024/blob/main/src/app/api/movies/%5Bid%5D/route.ts
https://bit.ly/bitbash-rsc-2024

X

2 windows PowerShell F

PS C:\Repos> npx create-next-app@latest react-berlin-2023-ws
Need to install the following packages:
create—-next-app@ld.o.3

Ok to proceed? (y)

Would you Llike to use ? No

Would you Llike to use ? No

Would you Llike to use ? No

Would you Llike to use T No

Would you like to use ? (recommended) No

Would you like to customize the default (@/*)z Yes
Creating a new Next.js app in c

Using npm.

Initializing project with template: app-tw

Installing dependencies:

Create a new
Next.|s app

added 332 packages, and audited 333 packages in 2us

117 packages are looking for funding
run ‘npm fund* for details

found vulnerabilities
Initialized a git repository.

Created react-berlin-2023-ws at C:\Repos\react-berlin-2023-ws

PS C:\Repos>
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Adding Shadcn

support

2 windows Powershell * +

Would you like to use TypeScript (recommended)? no
Which style would you like to use? » Default

Which color would you like to use as base

color? Slate

Where is your global CSS file? src/app/globals.css
Would you like to use CSS variables for colors? no

Where is your tailwind.config.js located?
Configure the import alias for components:
Configure the import alias for utils:

Are you using React Server Components?

tailwind.config.ts
@/components
@/Llib/utils
no

Write configuration to components.json. Proceed? yes

Writing components. json...
Initializing project...
Installing dependencies...

PS C:\Repos\react-berlin-2023-ws>

© ABL - The Problem Solver
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Adding Shadcn

components

2 windows Powershell x +

PS C:\Repos\react-berlin-2023-ws> npx shadcn-ui@latest add
command dialog form input label popover textarea toast
Done.

PS C:\Repos\react-berlin-2023-ws>

© ABL - The Problem Solver
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https://github.com/mauricedb/bitbash-rsc-2024

v Commits - mauricedb/bitbash-+ X + = (]

< C m 2% github.com/mauricedb/bitbash-rsc-2024/commits/main/ Cx ¥ B B O =0 o

L]
= Q @ mauricedb / bitbash-rsc-2024 & Q + - @ n s o

<> Code (2) Issues ') Pullrequests (5) Actions [ Projects [J Wiki 3 Settings

Commits

¥ main ~ Ax All users ~ B Alltime ~

-0~ Commits on Jan 12, 2024

Calling Server Actions directly
o mauricedb committed 5 days ago

Calling Server Actions From a <form /= s
beb3sfa (0 <>

@ mauriceds committed 5 days ago

I | l e ‘ | l a l I e S Loading the genres on the server L
21e623¢ (D <>
@ mauricedb committed 5 days ago

Using an RSC as a child of a client component

@ mauriceds committed 5 days ago

Site layout as an RSC

@ mauricedb committed 5 days ago

Suspense & RSC pages
@ mauriceds committed 5 days ago

Prevent over fetching
s2ciabe (D <>

@ mauricedb committed 5 days ago

Querying the database from a RSC cane

©

o

@ mauriceds committed 5 days ago

Updates and caching ss098ca (0 <>

@ mauricedb committed 5 days ago

Turning a React Client Component into a Server Component R
CELTELN (W

o mauricedb committed 3 days ago

Do or Do Not.
There Is No Try.!
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https://github.com/mauricedb/bitbash-rsc-2024/commits/main/

Clone the
GitHub

Repository

2 wWindows PowerShell X +

Ps C:\demos> git clone https://github.com/mauricedb/bitbash-rsc-2624.git

Cloning into '"bitbash-rsc-2824'...

remote: Enumerating objects: 227, done.

remote: Counting objects: 180% (227/227), done.

remote: Compressing objects: 100% (125/125), done.

Receiving objects: 188% (227/227)sed 227 (delta 86), pack-reused @Receiving objects: 91% (207/227)
Receiving objects: 1@e% (227/227), 1.e4 MiB | 6.83 MiB/s, done.

Resolving deltas: 100% (86/86), done.

PS C:\demos> cd .\bitbash-rsc-2824\

PS C:\demos\bitbash-rsc-20824>

© ABL - The Problem Solver
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Install NPM
Packages

+ -~ 0 X

2 wWindows PowerShell X

PS C:\demos\bitbash-rsc-2024> npm install

> react-berlin-2023-ws@®.1.0 postinstall
> prisma migrate dev --name init

SQLite database dev.db created at file:./dev.db
Applying migration ‘28231206113326_init"

The following migration(s) have been applied:

migrations/
[ 208231206113326_1init/
L~ migration.sql

Generated Prisma Client (v5.6.8) in 59ms

Running seed command ‘ts-node —-compiler-options {"module”:"CommonJS"} prisma/seed.ts"

The seed command has been executed.

Run the following to update
npm i --save-dev prisma@latest
npm i @prisma/client@latest

added 419 packages, and audited 420 packages in 19s

122 packages are looking for funding
run ‘npm fund' for details

found vulnerabilities
PS C:\demos\bitbash-rsc-202u>
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Start branch

- Start with the 00-start branch
- git checkout --track origin/00-start

© ABL - The Problem Solver
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Start the

application

>

PS

=

= n

© ABL - The Problem Solver

npm config get registry X +

C:\demos\bitbash-rsc-2024> npm run dev

eact-berlin-2023-ws@e.1.8 dev
ext dev

- Local: http://localhost: 360080
- Environments: .env

Ready in 2.4s

Compiling /

Compiled / in 4.1s (843 modules)
Compiled in 529ms (389 modules)
Compiled /movies in 313ms (8u® modules)
Compiled /genres in 301ms (851 modules)

16
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X &
Server/Client

o localhost:3000
@ localhost:3000
Genres

C M

&
Movies by genre...

v

Bitbash  Movies

HOME  AGENDA

N

14
I

JARe02s

il v
‘ 1060 u

The
application

T e

Do or Do Not.
There Is No Try.
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http://localhost:3000/

What are React Server
Components?

eeeeeeeeeeeeeeeeeeeee



* React Server Components (RSC) only execute on the server
* Traditionally React components always execute in the browser

* The server can even be a build server instead of a runtime server

React Server » RSC are not the same as Server Side Rendering

+ With SSR components are executed both on the client and server

Components

- Applications are a combination of server and client components

* The result: The back and front-end code are more integrated
* Leading to better type safety ©

© ABL - The Problem Solver 19



Before RSC
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With RSC

- e e —— = = —— — — — -— o ] it i P

&QJ

plnca‘tuon

Movies Lns‘tj @owe De_‘tml%}
Movie CO\PJJ (Mo\/\e Edu’CotJ

——
E >

I Server )
N -

o -

[ N o\v?godﬁon }

r—\f—\fa\

Rate Movie

— e ————

Vs N\
i Clent
%4 ~

— e —— — — — — — — — — — — — — — — — — — — — — — — — ——
LI UM U M T —————

NN
AN\

_—e— — — — ————

© ABL - The Problem Solver

22



React Server

Components

* Server components can be asynchronous
- Great to load data from some API

» Server components render just once
* No re-rendering with state changes or event handling

* The server component code is not send to the browser
- Can safely use secure API key’s etc.

« Smaller bundle sizes

& React Server Components require TypeScript 5.1 =

© ABL - The Problem Solver
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React Server

Component

genre-loadertsx X

You, 2 weeks ago | 1 author (You)
import { prisma } from '@/lib/db’
import { GenreSelector } from '@/components/genre-selector’

export async function GenrelLoader() f{
const genres = await prisma.genre.findMany(

orderBy: { name: 'asc' },
)

return <GenreSelector genres={genres} />

S W OO N WU P~ WK =

Y

}

© ABL - The Problem Solver

24
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React Client

Components

- Server components can render both server and client components
* Client components can only render other client components

- Adding 'use client’ to the top of a component makes it a client
component
« Used as a directive for the bundler to include this in the client JS bundle

* A client component is still executed on the server as part of SSR
* When using Next.js

movie-form.tsx X

'use client’

import { zodResolver } from '@hookform/resolvers/zod’
import as z from 'zod’

© ABL - The Problem Solver
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Turning a React
Client Component into a
Server Component
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Client Component

to
Server Component

* React Server Components normally perform better
« Only render once on the server

* The code doesn’t need to be shipped to the browser

- Can be async and await data to be fetched
* No need for a render/effect/re-render cycle in the browser

- Components that don’t need client capabilities should be RSC's
- State, effects, browser API’s etc. are client requirements

© ABL - The Problem Solver
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movies

[page.tsx

page.tsx

movie-form.tsx

export default async function MoviesPage({ searchParams:
-

async function fetchMovies() {

genre

DR G o

}: Props)

const url = genre ? ${genre}  : '/api/movies’

const rsp = await fetch ${url}
const movies = await rsp.json
return movies as Movie

const movies = await fetchMovies()

© ABL - The Problem Solver
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https://github.com/mauricedb/bitbash-rsc-2024/commit/93be3ccd37ba5a750a4a9229682166928a313e28

movie-card.tsx

page.tsx

© ABL - The Problem Solver

movie-card.tsx M X
‘use client’

import Image from 'next/image’
import Link from 'next/link’

29
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movies/[id]

[page.tsx

page.tsx

12
13
14
15
16
17
18
19

movie-card.tsx page.tsx M movie-form.tsx

const MoviePage: F(C<Props> = async ({ params:
async function fetchMovie() {

const rsp = await fetch

const movie = await rsp.json

return movie as Movie

const movie = await fetchMovie()

© ABL - The Problem Solver
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https://github.com/mauricedb/bitbash-rsc-2024/commit/93be3ccd37ba5a750a4a9229682166928a313e28

movie-form.tsx

Do or Do Not.
There Is No Try.

page.tsx movie-card.tsx page.tsx movie-form.tsx M X

You, 5 minutes ago | 1 author (You)
‘use client’

import { zodResolver } from '@hookform/resolvers/zod’
import as z from "zod'

© ABL - The Problem Solver
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Next.js and the
App Router
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Next.js and
the App

Router

* React is no longer just a client side library
* We need additional server side capabilities

* As well as additional code bundling options

* Next.js is the best production option available
« Shopify Hydrogen is also an option
« = Remix 2 doesn’t support RSC yet =

* There are also more experimental options
« Waku from Daishi Kato

« React Server Components Demo from the React team

© ABL - The Problem Solver
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https://waku.gg/
https://github.com/reactjs/server-components-demo

Rendering RSC's

- React Server Components are only rendered on the server
 And shipped to the client as a JSON like structure

« The React Server Component Payload

* The client then injects these JSON objects into the React tree
« Where it would previously have rendered these components themself

- = React already used a 2 step process =
« Components render to a virtual DOM
- Just a series of JavaScript objects
* Reconciliation maps the virtual DOM to the browser DOM

* Oran HTML stream in the case or Server Side Rendering

© ABL - The Problem Solver
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Async transport

* RSC's are streamed asynchronously to the client
* Enables using Suspense boundaries while loading

© ABL - The Problem Solver
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Code bundling

» Multiple JavaScript bundles have to be made
* The client and server have different code bundles

- Server Component code is never executed on the client
- Can use react-server-dom-webpack or a similar package

© ABL - The Problem Solver

36



Updates and caching
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Updates and

caching

* Next.js does a lot of optimizations using caching
* Both on the server and client

* The Next.js uses a Data Cache and Full Router Cache on the server

- Use export const dynamic = 'force-dynamic’ to make sure data on the
server isn't cached

 Can also be controlled at the fetch() level

 The Next.js uses a Router Cache on the client
 Dynamically rendered routes are purged after 30 seconds

- Call router.refresh() to immediately purge the cache
* Make sure to use the router from 'next/navigation’

© ABL - The Problem Solver
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https://nextjs.org/docs/app/building-your-application/caching

movies/[id]
[page.tsx

movie-form.tsx M page.tsx page.tsx

6 type Props = {
7 params: {

8 id: string
9 }

}

export const dynamic = 'force-dynamic'’

const MoviePage: F(<Props> = async ({ params: { id } }) = {
15 async function fetchMovie() {
16 const rsp = await fetch ${id}
17 const movie = await rsp.json

return movie as Movie
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movie-
form.tsx

X

movie-form.tsx M page.tsx page.tsx

42 export const MovieForm: F(C<Props> = ({ initialMovie }) = {

43 const { toast } = useToast()

L4 const router = useRouter()

45

46 const onSubmit = async (movie: Movie) = 1
'y try

48 awalt saveMovie(movie)

49

50 router.refresh()

51

52 toast({

53 title: 'Success’,

54 description: 'Move updated’,

55
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movies

[page.tsx

Do or Do Not.
There Is No Try.

movie-form.tsx M page.tsx
type Props =

searchParams:
genre?: stri

export const dyn

export default async function MoviesPage({ searchParams: genre }:

async function
const url =
const rsp =
const movies

page.tsx

ng

amic = 'force-dynamic’

fetchMovies() {
genre ?
await fetch

= await rsp.json

return movies as Movie

© ABL - The Problem Solver

${genre}

${url}

'/api/movies’

D P ©

Props) {
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Querying the database
from an RSC
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Querying the

database from
an RSC

 Because an RSC only runs on the server we can use server side code
 Query the DB using Prisma directly

* It's save to use secrets like database connection strings

* Never executed in the browser
* Leads to smaller JavaScript bundle sizes

© ABL - The Problem Solver
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page.tsx M X page.tsx M route.ts M SN Q ©

14 async function getMovies(genreld: string | undefined) {

15 const orderBy: Prisma.MovieOrderByWithRelationInput = {
16 voteAverage: 'desc',
17 } as const
18
19 > if (genreld) {
: 30 } else {
mOVIeS 31 const movies = await prisma.movie.findMany({

32 orderBy,
33 }

[page.tsx Y _
35 return movies
36 }
37 1
38+
39 export default async function MoviesPage({ searchParams: genre }: Props) {
40 const movies = await getMovies(genre)
41
42 return (

43 <main className="flex-1 space-y-4 p-8 pt-6">
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movies/[id]
[page.tsx

page.tsx page.tsx M X route.ts M

12 export const dynamic = 'force-dynamic'

13

14  async function getMovie(id: string) {

15 const movie = await prisma.movie.findFirstOrThrow(
16 where: { id: +id },

17 )

18

19 return movie

20 }

21

22  const MoviePage: FC<Props> = async ({ params: { id } }) = {
23 const movie = await getMovie(id)

24

25 if ('movie) 1
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File Edit Selection View Go Run Terminal Help

routets M X

page.tsx page.tsx

You, 4 days ago | 1 author (You)

1 import { saveMovie } from '@/server/save-movie’
2 import { Movie } from '@prisma/client’
3 import { NextRequest, NextResponse } from 'next/server’
A
5 export async function PUT(request: NextRequest) {
6 try {
. . . 7 const movie = (await request.json()) as Movie
api/movies/[id] :
9 await saveMovie(movie
[route.ts 10
11 return new NextResponse y 1
i 12 status: ,
13+ }
14 } catch (error) {
¥ 15 console.error(error
16
17 return new NextResponse , 1
18 status: -
19 }
20 }

Do or Do Not. 21

¥ There Is No Try.
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Prevent over fetching
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Prevent over

fetching

» Colocation of DB queries with components enables more optimizations
* Fetch exactly the right amount of data

* No more shared REST queries

© ABL - The Problem Solver

48



pagetsx M X

~ SOURCE CONTROL

13 type MovieForCard = ComponentProps<typeof MovieCard>['movie'] Prevent over fetching
14 L
15 export const dynamic = 'force-dynamic’ ¥iGommi ‘vo 3&
16 ; ; S
17 async function getMovies(genreld: string | undefined): Promise<MovieForCard[1> { o EE
18 const orderBy: Prisma.MovieOrderByWithRelationInput = {
19 voteAverage: 'desc’,
20 } as const
21
22 const select = {
23 id: ’

- 24 title: ,

l I lOVIeS 25 overview: ,
26 backdropPath: g
27 voteAverage: ’
28 voteCount: 0
paqe tSX 29 } satisfies Prisma.MovieSelect o
. 30
: 314+ if (genreld) {
32 const genre = await prisma.genre.findFirst({
33 where: { id: +genreld 1},
34 include: {
35 movies:
36 orderBy,
37 select,
38 ! > REPOSITORIES
39 L }' > COMMITS
> BRANCHES

TERMINAL PR

OUTPUT DEBUG

PORTS ~ AZURE  GITLENS  COMMENTS +v o~ X

> REMOTES
> STASHES
> TAGS

> WORKTREES

- wait compiling...
- event compiled client and server successfully in 319 ms (736 modules)

Do or Do Not.
There Is No Try.
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Break time
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Suspense & RSC pages
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Suspense &

RSC pages

* React Server Components are suspended until they resolve
 Can be controlled with <Suspense /> boundaries

* Next.js makes it easy to suspend when rendering an async page
- Add a loading.tsx

 They can be nested and the closest loading component will be used

© ABL - The Problem Solver
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movies
[loading.tsx

page.isx
import { RotateCw } from 'lucide-react’

export default function Loading() {
return (
<div
role="status"
aria-label="Loading"
className="absolute left-1/2 top-2/4 -translate-x-1/2 -translate-y-1/2"

1
2
3
4
5
6
7
8
9

=
S

<RotateCw className="animate-spin text-foreground/40" size="5rem" />
</div>
)

=
=
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https://github.com/mauricedb/bitbash-rsc-2024/commit/50f1083cc06c223d0ae84579dbdfa2cf5fde0bca

page.tsx page.tsx

async function getMovies(genreld: string | undefined): Promise<MovieForCard[]> {
const orderBy: Prisma.MovieOrderByWithRelationInput = {
voteAverage: ‘desc’,

} as const

mOVieS Cozz':c select

?
title:

[page.tsx

backdropPath:
voteAverage: ;

voteCount: 7
satisfies Prisma.MovieSelect

await sleep(
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movies/[id]

[page.tsx

Do or Do Not.

There Is No Try.

page.tsx page.tsx

15 async function getMovie(id: string) {

16 const movie = await prisma.movie.findFirstOrThrow(
17 where: { id: +id },

18 )

19

20 await sleep(

21

22 return movie

23
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RSC and

streaming

 Async React Server Components are streamed to the browser
* Using the React Server Component Payload

* On the client they are suspended until the component resolves

» Server action responses can also stream components back
- After a revalidatePath() or a revalidateTag()
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RSC Payload

tHL["/_next/static/css/app/layout.css?v=1695461372573",{"as": "style"}]
:["$a1",["development”,[[["",{"children":["movies",{"children":[["id","238","d"],{"children":["__PAGE__",
:I{"id":"(app-pages-browser)/./src/components/shopping-cart.tsx","chunks":["app/layout:static/chunks/app/la
:I{"id":"(app-pages-browser)/./src/components/main-nav.tsx","chunks":["app/layout:static/chunks/app/layout.
:I{"id":"(app-pages-browser)/./node_modules/next/dist/client/components/layout-router.js","chunks":["app-paj
:I{"id":"(app-pages-browser)/./node_modules/next/dist/client/components/render-from-template-context.js","c
:I{"id":"(app-pages-browser)/./src/components/ui/toaster.tsx
:"$undefined"”

now

,"chunks":["app/layout:static/chunks/app/layou

["$","html", ,1"lang":"en","children”:["$", "body", y1"className”:"min-h-screen bg-background a

[[" ,"0",{"charSet": "utf-8" :|'[||$u'lltit1ell’u1u’ "children":"TS Congress” ],[u$u,nmetau’u2u' "name"

non

:Ii“id":"(app—pages—browser)/./src/components/movie—form.tsx , "chunks":["app/movies/[id]/page:static/chunks

"id":"8ee@c4224708db417bfe9cefcale38c119b06524", "bound™ : }

:["$","main", y{"className":"flex-1 space-y-4 p-8 pt-6","children”:[["$","h2", y1"className": "text-3x
:I{"id":"(app-pages-browser)/./src/components/genre-selector.tsx","chunks":["app/layout:static/chunks/app/14
[, "$LF", yi"genres”:[{"id":28, "name" :"Action"},{"id":12, "name”: "Adventure"},{"id":16,"name" : "Animati
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Site layout as

an RSC

- A layout.tsx is typically a React Server Component
* But can be a client component if required

- Render server and/or client components as needed
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layout.tsx

layout.tsx M X main-nav.tsx shopping-cart.tsx genre-selector.tsx
L 1 1
import './globals.css

import type { PropsWithChildren } from 'react’
import type { Metadata } from 'next’
import { Inter } from 'next/font/google’
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main-nav.tsx

layout.tsx M main-nav.tsx M X shopping-cart.tsx M genre-selector.tsx M

‘use client’

import Link from 'next/link’
import { usePathname, useSearchParams } from 'next/navigation'’

import { cn } from '@/lib/utils’

import { Button } from '@/components/ui/button’
import { useShoppingCart } from './shopping-cart'’
import { GenreSelector } from './genre-selector’

O 00O OO0 B~ W N

11 export function MainNav() {

12 const { itemCount, checkout } = useShoppingCart()
13 const pathname = usePathname()

144 const searchParams = useSearchParams()

const hasGenreParam = searchParams ?. has('genre')
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shopping-cart.tsx

layout.tsx M main-nav.tsx M shopping-carttsx M X genre-selector.tsx M

‘use client’

import {
ComponentProps,
PropsWithChildren,
createContext,
useContext,
useState,

} from 'react'’

O oo NO U P~ WN =

import { CheckoutDialog } from '@/components/checkout-dialog’

13 type ShoppingCartMovies = ComponentProps<typeof CheckoutDialog>[ 'movies’]
type ShoppingCartMovie = ShoppingCartMovies[0]

const ShoppingCartContext = createContext({
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layout.tsx M main-nav.tsx M shopping-cart.tsx M genre-selectortsx M X OV C)]

1 'use client’
p
3 import { useEffect, useState } from 'react’
[A import { Check, ChevronsUpDown } from 'lucide-react’
5 import { useRouter, useSearchParams } from 'next/navigation’
6 import { Genre } from '@prisma/client’
7
genre_selector_tsx 8 import { cn } from '@/lib/utils’
9 import { Button } from '@/components/ui/button’
10 import { Command, CommandGroup, CommandItem } from '@/components/ui/command’
11 import {
12 Popover,
13 PopoverContent,
14 PopoverTrigger,

} from '@/components/ui/popover’

export function GenreSelector() {

‘ Do or Do Not.
¥ There Is No Try.
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Whatis a

server
component?

What is a server component and what is not?
* Client components are marked with 'use client'

But not all other components are server components
« With a component without 'use client’ it depends on their parents

If a component is a client component
- Then all components it renders are also client components

w There is no 'use server' for server components =
* The 'use server’ directive exists but is used for Server Actions

* But thereis a server-only NPM package
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server-only

* Import the server-only NPM package
 With components that must run on the server

Failed to compile

rver-or-client\child-component.tsx

erverComponentsError:

You're importing a component that needs server-only. That only works in a Server Component but one
of its parents marked with e client”, so it Client Component.

Learn more: https xtj etting-started/react- entials

= tepos\reactadvanced 3 \app\server-or-client\child-component.t

| import 'server-only’

| import { sleep } /lib/utils

3 |

One of these is marked as a client entry with "use client™:
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Using an RSC
as a child of a

client
component

* A client component can have a server component as a child
* Aslong as it doesn't render it

- Render the child server component from another server component
¢ And pass it as a children prop into the client component
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chilc
com

child-componenttsx M X

parent-component.tsx M page.tsx M

import 'server-only’

import { prisma } from '@/1ib/db’

export async function ChildComponent() {
console.log( 'Rendering Child Component')
const movie = await prisma.movie.findFirstOrThrow()

ponent.tsx

return (

10 <main className="bg-red-400 p-12">
11 <h2 className="my-6 text-4x1 font-bold">Child Component</h2>
12 <p>imovie.title}</p>

</main>
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parent-
component.tsx

child-component.tsx M parent-componenttsx M X page.tsx M

1 ‘'use client’

P

3 import { PropsWithChildren } from 'react'’

4

5 export function ParentComponent({ children }: PropswithChildren) {
6 console.log( 'Rendering Parent Component')
7

8 return (

9 <main className="bg-green-400 p-12">

10 <h2
11 className="my-6 text-4x1 font-bold"
12 onClick={() = console.log('Click")
13 >
14 Parent Component
15 </h2>
16 children
17 </main>
18 )
19 1}
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child-component.tsx M pagetsx M X

parent-component.tsx M

1| import { ChildComponent } from './child-component’

2 import { ParentComponent } from './parent-component’
3

4 export default function ServerOrClientPage() {

. 5 console.log( 'Rendering Server Or Client Page')
server-or-client :
7 return (
/pagetsx 8 <main className="bg-blue-400 p-12">
9 <h1l className="my-6 text-4x1 font-bold">Server Or Client Page</h1>
i 10 <ParentComponent>
11 <ChildComponent />
12 </ParentComponent>
4 13 </main>

A )

}

Do or Do Not.
¥ There Is No Try.
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Loading the

genres on the
server

» Splitting the GenreSelector in a client and a server component
* Client component for interactivity

* Server component for data loading

» The MainNav component still needs to be a client component
* The GenreSelector/Loader can be injected as a prop
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genre-selector.tsx

genre-selector.tsx M X site-header.tsx M main-nav.tsx M

17  type Props = {

18 genres: Genrel ]

19 }

20

21 export function GenreSelector({ genres }: Props) {
22 const [open, setOpen] = useState( )

P const searchParams = useSearchParams()

24 const selectedGenre = searchParams ?.get( 'genre') 72 "'
25 const { push } = useRouter()

26 const items = genres.map((genre) = ({

27 value: genre.id.toString(),

28 label: genre.name,

29 }))

30

31 return (

32 <Popover open=iopen; onOpenChange={isetOpen;>
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genre-loader.tsx

genre-selector.tsx M X site-header.tsx M main-nav.tsx M

1 import 'server-only’

2

3 import { prisma } from '@/lib/db’

4 import { GenreSelector } from './genre-selector’
5 sleep 'a/1lib/utils’

6

7 export async function GenreLoader() {

8

9
10 const genres = await prisma.genre.findMany(
11 orderBy: {
12 name: ‘'asc’,
13 b

)

return <GenreSelector genres={genres} />

}
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site-header.tsx

genre SX site-header.tsx X main-nav.tsx

import { MainNav } from '@/components/main-nav’
import { GenrelLoader } from './genre-loader’

export function SiteHeader() {
return (
<header className="sticky top-@ z-40 w-full border-b bg-background">
<div className="container flex h-16">
<MainNav genreSelector-{<GenrelLoader />} />
</div>
</header>
)

1
2
3
4
5
6
7
8
9

[
N RS
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main-nav.tsx

genre-selector.tsx M site-header.tsx M main-nav.tsx M X

| 'use client'

2

3 import Link from 'next/link'’

4 import { usePathname, useSearchParams } from 'next/navigation’

5 import { ReactNode, Suspense } from 'react’

6 | import { RotateCw } from 'lucide-react’

7

8 import { cn } from '@/lib/utils’

9 import { Button } from '@/components/ui/button’
10  import { useShoppingCart } from './shopping-cart’
11
12  type Props = {

13 genreSelector: ReactNode
14  }
15

[
(@)

export function MainNav({ genreSelector }: Props) {
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main-nav.tsx

Do or Do Not.
There Is No Try.

genre-selec site-header.tsx M main-nav.tsx M X

47 <Suspense

48 fallback=

49 <Button

50 variant="outline"

51 className="w-[200px] justify-between text-foreground/60"
52 disabled

53

54 Movies by genre...

55 <ChevronsUpDown className="ml-2 h-4 w-4 shrink-@ opacity-50" />
56 </Button>

57

58

59 genreSelector

60 </Suspense>
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Calling Server

Actions

* React Server Actions are functions that we can call on the client
* Butthen execute on the server

« Add the 'use server' annotation
» Can be at the top of a file or a single function

* Not related to server components

- Can be passed as the action of a client side <form />
 The forms data is passed as a FormData parameter

- Even works if JavaScript is disabled ©
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genre-form.tsx M X

22 export function GenreForm({ genre }: Props) {

23 const onSubmit = async (formData: FormData) = 1
24 'use server'’
25
26 const genre: Genre =
27 id: +(formData.get('id') as string),
28 name: formData.get('name') as string,
29
genre-form.tsx 30
31 awalt saveGenre(genre
32
33 redirect('/genres'
34 }
35
36 return (
37 <form action={onSubmit} className="mx-auto w-1/2">
38 <Card>
39 <CardHeader>

40 <CardTitle>Edit Movie Genre</CardTitle>

‘ Do or Do Not.
¥ There Is No Try.
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Calling Server

Actions

- Can also be called as a normal asynchronous function
 The network request is handled for you

* Optionally use the useTransition() hook
* For feedback while the server action is executing
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checkout-shopping-cart.ts

O 00 < O 1 &~ W N =

e S Sy =Y
w N R e

14
15
16
17

J5 next.config.js M

checkout-shopping-cartts M X checkout-dialog.tsx M

'use server’
import { Movie } from '@prisma/client’
type ShoppingCartMovie = Pick<Movie, '1d’ | "title'>

type Cart = {
account: string
customerName: string
movies: ShoppingCartMovie| ]

}

export async function checkoutShoppingCart(1
account,
customerName,
movies,
}: cart) {
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J5 next.config.js M checkout-shopping-cart.ts M checkout-dialog.tsx M X

53 const onSubmit = async (data: CheckoutForm) =
54 try

55 await checkoutShoppingCart({

56 account: data.account,
checkout-dialog.tsx 57 customerName: data.name,

58 movies,

59 1)

60 toast(1

61 title: 'Success’,

62 description: 'Checkout completed’,

63 })

‘ Do or Do Not.
¥ There Is No Try.
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Recommendations

- Start with Shared components
« Canrun on the server or client as needed

- Will default to act as Server Components

* Switch to Server only components if needed
* When you need to use server side capabilities

* Only use Client only components when absolutely needed
- Local state or side effects

* Interactivity
* Required browser API’s

* Learn all about the new capabilities of Next.js
* App Router

» Caching
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Conclusion

React Server Components are a great new addition to React
* Helps with keeping the client more responsive

- Makes the application architecture easier

Use Next.js and the App Router
 Because you need a server

React Client Components
« Are components with state and interactivity and require ‘use client’

Control caching of React Server Components
- Because Next.js is quite aggressive about caching

React Server Components are streamed
+ And use Suspense boundaries until they are done

Server Actions are a great way to call back into the server
 They also update the invalidated server components on the client
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Thank you for joining

Share your thoughts
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