

Building Robust Web
Applications with
Test-Driven Development
and Playwright
Maurice de Beijer
@mauricedb

 Maurice de Beijer

 The Problem Solver

 Freelance developer/instructor

 Twitter: @mauricedb

 Web: http://www.theproblemsolver.dev/

 E-mail: maurice.de.beijer@gmail.com

© ABL - The Problem Solver 3

https://twitter.com/MauriceDB
http://www.theproblemsolver.dev/
mailto:maurice.de.beijer@gmail.com

What We'll
Build Today

 Movie Browsing Application
 Landing page with navigation

 List of top-rated movies

 Movie details page

 Movie editing functionality

 Learning Objectives
 TDD workflow in frontend development based on user stories

 Writing effective Playwright tests

 Building robust web applications

 Real-world testing scenarios

Type it out
by hand?

“Typing it drills it into your brain much better than
simply copying and pasting it. You're forming new
neuron pathways. Those pathways are going to
help you in the future. Help them out now!”

© ABL - The Problem Solver 5

Prerequisites
Install Node & NPM

Install the GitHub repository

© ABL - The Problem Solver 6

Install
Node.js & NPM

© ABL - The Problem Solver 7

https://git-scm.com/downloads
https://nodejs.org/en/

Following
Along

 Repo: https://github.com/mauricedb/bitbash-tdd-2025

 Slides: https://www.theproblemsolver.dev/docs/bitbash-tdd-2025.pdf

© ABL - The Problem Solver 8

https://github.com/mauricedb/bitbash-tdd-2025
https://www.theproblemsolver.dev/docs/bitbash-tdd-2025.pdf
https://github.com/mauricedb/tdd-playwright-24
https://github.com/mauricedb/tdd-playwright-24/commit/81315066e80753a62ff70f4f6abf32d3462b0648

The changes

© ABL - The Problem Solver 9

https://github.com/mauricedb/bitbash-tdd-2025/commits/main/

Clone the
GitHub
Repository

© ABL - The Problem Solver 10

https://github.com/mauricedb/bitbash-tdd-2025

Install NPM
Packages

© ABL - The Problem Solver 11

https://github.com/mauricedb/bitbash-tdd-2025

Start branch  Start with the 00-start branch
 git checkout --track origin/00-start

© ABL - The Problem Solver 12

Start the
application

© ABL - The Problem Solver 13

The application

© ABL - The Problem Solver 14

http://localhost:3000/

Introduction to Test-
Driven Development
(TDD)

What is Test-
Driven
Development?

 A software development approach where tests are written before
the actual code

 Tests drive the design and implementation of the code

 “Red-Green-Refactor” cycle

The TDD Cycle

 Write a failing test (Red)

 Write minimal code to make the test pass (Green)

 Refactor the code while keeping tests green

 Repeat…

Software
Testing
Pyramid

Benefits of
TDD

 Improved Code Quality
 Fewer bugs and defects

 Better code coverage

 Cleaner, more maintainable code

 Built-in documentation through tests

 Faster Development
 Catch bugs early in the development cycle

 Reduce debugging time

 More confident code changes

 Easier refactoring

 Better Design
 Forces modular design

 Reduces code coupling

 Promotes interface-driven development

 Makes code more testable

Common TDD
Misconceptions

 "TDD takes too much time"
 Initial investment pays off in reduced debugging and maintenance

 Faster identification of issues

 Less time spent on manual testing

 "I'll write tests later"
 Tests written after code tend to be incomplete

 Missing edge cases

 Code might not be designed for testability

 "TDD is only for backend development"
 Frontend can benefit greatly from TDD

 Ensures consistent UI behavior

 Catches regression issues early

Introduction to
Playwright
A powerful end-to-end testing framework for web
applications

What is
Playwright?

 Modern end-to-end testing framework

 Created and maintained as open source by Microsoft

 Support for modern browsers

 Cross-platform support

Key Features

 Auto-wait capabilities

 Network interception

 Mobile device emulation

 Multiple browser contexts

 Powerful debugging tools

Why
Playwright?

 Advantages
 Fast and reliable tests

 Cross-browser support out of the box

 Modern features like web sockets

 Rich debugging capabilities

 Strong TypeScript support

 Use Cases
 End-to-end testing

 Component testing

 Visual regression testing

 Performance testing

 Network monitoring

Playwright
Core Concepts

 Browser Contexts
 Isolated browser sessions

 Independent cookie/storage states

 Perfect for testing multi-user scenarios

 Auto-waiting
 Element availability

 Network requests

 Animations

 No need for explicit waits

 Locators
 Reliable element selection

 Built-in retry logic

 Multiple selection strategies

Combining
TDD and
Playwright

 Workflow
 Write a failing Playwright test (Red)

 Implement the feature

 Run tests and fix issues (Green)

 Refactor with confidence

 Benefits
 Consistent UI behavior

 Caught regression issues

 Documented features

 Confident deployments

Installing Playwright

Installing
Playwright

 Install Playwright from a terminal window in the root folder
 npm init playwright@latest

 The VS Code extension is a good alternative
 Also allows for executing tests

https://playwright.dev/docs/intro
https://playwright.dev/docs/getting-started-vscode

npm init
playwright

https://github.com/mauricedb/bitbash-tdd-2025/commit/4c51671934323aa99a4f48737ad99128f4a53ae3

package.json

https://github.com/mauricedb/bitbash-tdd-2025/commit/4c51671934323aa99a4f48737ad99128f4a53ae3

Playwright test
console mode

https://github.com/mauricedb/bitbash-tdd-2025/commit/4c51671934323aa99a4f48737ad99128f4a53ae3

Playwright test
in UI mode

© ABL - The Problem Solver 33

https://github.com/mauricedb/bitbash-tdd-2025/commit/4c51671934323aa99a4f48737ad99128f4a53ae3

Implementing the
Landing Page

Implementing
Landing Page

“As a haunted movie enthusiast

I want to see a welcoming landing page

So that I can understand what the application offers and navigate to
different sections”

Landing Page -
Header Section

© ABL - The Problem Solver 36

https://github.com/mauricedb/bitbash-tdd-2025/commit/357f0b15f82ac54fefea30d1072d055bd34462f1

Best Practices
with
Playwright

 Test user visible behavior

 Prefer user-facing attributes to XPath or CSS selectors
 page.getByRole() to locate by explicit and implicit accessibility

attributes.

 page.getByLabel() to locate a form control by associated label's
text.

 page.getByPlaceholder() to locate an input by placeholder.

 page.getByText() to locate by text content.

 Use web first assertions
 Playwright will wait until the expected condition is met

Landing Page -
Header Section
with links

© ABL - The Problem Solver 38

https://github.com/mauricedb/bitbash-tdd-2025/commit/c91a17421c71cbaa8a331fc7eaed5f5bf482cce9

Playwright
configuration

 The Playwright configuration can prevent some repeated code

 And make it easier to update settings
 For example, when running against a preview environment in the CI
 baseURL: process.env.PLAYWRIGHT_TEST_BASE_URL ?? 'http://localhost:3000’

 Group related tests
 test.describe()

 Use the test hooks that are executed before and after tests
 test.beforeEach(), test.afterEach()

 test.beforeAll(), test.afterAll()

playwright.
config.ts

https://github.com/mauricedb/bitbash-tdd-2025/commit/34b5d1d4c462a51ba3fa1648c1350c6e4708d501

Landing Page -
Main Content

© ABL - The Problem Solver 41

https://github.com/mauricedb/bitbash-tdd-2025/commit/34b5d1d4c462a51ba3fa1648c1350c6e4708d501

Break time

© ABL - The Problem Solver 42

Implementing the
Movie List

Implementing
the Movie List

“As a haunted movies enthusiast

I want to browse through a list of top-rated haunted movies

So that I can discover new films and see their ratings”

Playwright
test failure

 A Playwright doesn’t need to stop at the first failure
 Use expect.soft() to keep going after a failed expectation

Movies List -
Basic Movie List

© ABL - The Problem Solver 46

https://github.com/mauricedb/bitbash-tdd-2025/commit/8009a8588522ea382666508ea452de9175c1bf89

Movies List -
Grid Layout

“As a haunted movie enthusiast

I want to see the movies in a responsive grid”

Movies List -
Grid Layout

© ABL - The Problem Solver 48

https://github.com/mauricedb/bitbash-tdd-2025/commit/9bbce81c12d9eb257d964440318ac6802f6066c3

Playwright
test size

 Favor a few larger tests over many small ones
 Break larger tests into steps with test.step()

Movies List -
Responsive Grid

© ABL - The Problem Solver 50

https://github.com/mauricedb/bitbash-tdd-2025/commit/c30fe2d105645e2a5c6ba5f41056d256d206ac67

Movies List -
Sorted by vote

“As a haunted movie enthusiast

I want to see the movies sorted by vote average in descending order”

Movies List -
Sorted by vote

© ABL - The Problem Solver 52

https://github.com/mauricedb/bitbash-tdd-2025/commit/975d9c89a017750e803c789661c9cd60869d3a75

Movies List -
Card
Component

“As a haunted movie enthusiast

I want to see each movie in a card with title, poster, rating and
description”

Adding test
helpers

 Use accessibility options to make elements easier to find
 Like aria-label and page.getByLabel()

 Only use id or data-testid as a last resort

 Use data-value to add values in an unformatted format
 But only if a value isn’t easy to read from the DOM

Movies List -
Card Component

© ABL - The Problem Solver 55

https://github.com/mauricedb/bitbash-tdd-2025/commit/c059f23f91c61ed091b5aeb53adddfad464822e9

Movies List -
12 Movies per
page

“As a haunted movie enthusiast

I want to see each 12 movie cards at the time”

Movies List -
12 Movies per
page

© ABL - The Problem Solver 57

https://github.com/mauricedb/bitbash-tdd-2025/commit/a63cae961b45d8060f0e312efad85c72fd9d893e

Movies List -
Pagination

“As a haunted movie enthusiast

I want to be able to click a Next button and see more movies”

Movies List -
Pagination

© ABL - The Problem Solver 59

https://github.com/mauricedb/bitbash-tdd-2025/commit/7288fdc77e707de525beaace7cb3857645cd019b

Implementing the
Navigation Menu

Implementing
the Navigation
Menu

“As a haunted movies enthusiast using the application

I want to have a consistent navigation menu

So that I can easily access different sections of the application”

Navigation
Menu

© ABL - The Problem Solver 62

https://github.com/mauricedb/bitbash-tdd-2025/commit/60a330cca6b84396dc6919633b395d6d1f9d4cee

Navigation
Menu

© ABL - The Problem Solver 63

https://github.com/mauricedb/bitbash-tdd-2025/commit/60a330cca6b84396dc6919633b395d6d1f9d4cee

Implementing the
Movie Details Page

Implementing
the Movie
Details Page

“As a haunted movies enthusiast using the application

I want to view comprehensive details about a specific movie

So that I can make informed decisions about watching it and learn
more about the film”

Movie Details -
Key Information

© ABL - The Problem Solver 66

https://github.com/mauricedb/bitbash-tdd-2025/commit/604358dd63ce105589160e369a2d6144915953a7

Movie Details -
Key Information
Improved

 Requires Psycho to be the first movie
 Might no longer be true in the future

 Adapting to the data returned can be more reliable

Movie Details -
Key Information
Improved

© ABL - The Problem Solver 68

https://github.com/mauricedb/bitbash-tdd-2025/commit/a4fec42b53bde4e3b13b4debc61b0e5ce71d97a2

Movie Details -
Interaction

“As an administrator of the haunted movies application

I want to be able to edit a movie in the database

So that I can maintain accurate and up-to-date movie details”

Movie Details -
Interaction

© ABL - The Problem Solver 70

https://github.com/mauricedb/bitbash-tdd-2025/commit/7855b2767605e3b59ed7f6f264d4e35e2b6cd86c

Implementing the
Movie Edit Page

Implementing
the Movie Edit
Page

“As an administrator of the haunted movies application

I want to edit existing movie information in the database

So that I can maintain accurate and up-to-date movie details”

Movie Edit -
Form Fields

© ABL - The Problem Solver 73

https://github.com/mauricedb/bitbash-tdd-2025/commit/e610c1dc25f19887c8069321dc5a01dd6b15a37c

Saving the Movie Edits

Saving the
Movie Edits

“As an administrator of the haunted movies application

I want to save my changes to the movie database

So that updated movie information is persisted and immediately
available to users”

Movie Edits -
Basic Saving

© ABL - The Problem Solver 76

https://github.com/mauricedb/bitbash-tdd-2025/commit/72da977e445a70d6fe5af3b827d506f4e2c5b49c

Movie Edits -
Improved
Saving

 Beware: changing data can lead to flaky tests
 Reset to the database to a known state before each test

 Only make changes to newly added data
that doesn’t show up in other tests

 Or use Playwright network mocking
 Also useful to simulate and test errors like server not available

Movie Edits -
Improved Saving

© ABL - The Problem Solver 78

https://github.com/mauricedb/bitbash-tdd-2025/commit/b5a0a2511a2e56f34dda7dce0d12211429c21d32

Validating the Movie
Edits

Validating the
Movie Edits

“As an administrator submitting haunted movie changes

I want feedback on the validity of my edits

So that I can correct any errors before saving to the database”

Movie Edits -
Validation

© ABL - The Problem Solver 81

https://github.com/mauricedb/bitbash-tdd-2025/commit/9ae5755db440fb544e08e885bdcaf3ed4e2895af

Recommendations with
Playwright

© ABL - The Problem Solver 82

Best Practices
with
Playwright

 Test Organization
 Group related tests

 Use before/after hooks wisely

 Share common setup

 Test Reliability
 Use strong locators

 Handle dynamic content

 Consider network conditions

 Avoid flaky tests but enable retries

 Performance
 Reuse browser context when possible

 Prefer fewer larger tests with soft asserts

 Parallel test execution

 Minimize unnecessary actions

Best Practices
with
Playwright

 Test user visible behavior
 Don’t rely on things a real user doesn’t use like a class name or id

 Prefer user-facing attributes to XPath or CSS selectors
 page.getByRole() to locate by explicit and implicit accessibility

attributes.

 page.getByText() to locate by text content.

 page.getByLabel() to locate a form control by associated label's
text.

 page.getByPlaceholder() to locate an input by placeholder.

 Use web first assertions
 Playwright will wait until the expected condition is met

Thank you for joining

© ABL - The Problem Solver 85

Share your thoughts

https://x.com/intent/post?text=Building+Robust+Web+Applications+with+Test-Driven+Development+and+Playwright+by+%40mauricedb

	Default Section
	Slide 1
	Slide 2: Building Robust Web Applications with Test-Driven Development and Playwright
	Slide 3
	Slide 4: What We'll Build Today
	Slide 5: Type it out by hand?
	Slide 6: Prerequisites
	Slide 7: Install Node.js & NPM
	Slide 8: Following Along
	Slide 9: The changes
	Slide 10: Clone the GitHub Repository
	Slide 11: Install NPM Packages
	Slide 12: Start branch
	Slide 13: Start the application
	Slide 14: The application
	Slide 15: Introduction to Test-Driven Development (TDD)
	Slide 16: What is Test-Driven Development?
	Slide 17: The TDD Cycle
	Slide 18: Software Testing Pyramid
	Slide 19: Benefits of TDD
	Slide 20: Common TDD Misconceptions
	Slide 21: Introduction to Playwright
	Slide 22: What is Playwright?
	Slide 23: Key Features
	Slide 24: Why Playwright?
	Slide 26: Playwright Core Concepts
	Slide 27: Combining TDD and Playwright
	Slide 28: Installing Playwright
	Slide 29: Installing Playwright
	Slide 30: npm init playwright
	Slide 31: package.json
	Slide 32: Playwright test console mode
	Slide 33: Playwright test in UI mode
	Slide 34: Implementing the Landing Page
	Slide 35: Implementing Landing Page
	Slide 36: Landing Page - Header Section
	Slide 37: Best Practices with Playwright
	Slide 38: Landing Page - Header Section with links
	Slide 39: Playwright configuration
	Slide 40: playwright. config.ts
	Slide 41: Landing Page - Main Content
	Slide 42: Break time
	Slide 43: Implementing the Movie List
	Slide 44: Implementing the Movie List
	Slide 45: Playwright test failure
	Slide 46: Movies List - Basic Movie List
	Slide 47: Movies List - Grid Layout
	Slide 48: Movies List - Grid Layout
	Slide 49: Playwright test size
	Slide 50: Movies List - Responsive Grid
	Slide 51: Movies List - Sorted by vote
	Slide 52: Movies List - Sorted by vote
	Slide 53: Movies List - Card Component
	Slide 54: Adding test helpers
	Slide 55: Movies List - Card Component
	Slide 56: Movies List - 12 Movies per page
	Slide 57: Movies List - 12 Movies per page
	Slide 58: Movies List - Pagination
	Slide 59: Movies List - Pagination
	Slide 60: Implementing the Navigation Menu
	Slide 61: Implementing the Navigation Menu
	Slide 62: Navigation Menu
	Slide 63: Navigation Menu
	Slide 64: Implementing the Movie Details Page
	Slide 65: Implementing the Movie Details Page
	Slide 66: Movie Details - Key Information
	Slide 67: Movie Details - Key Information Improved
	Slide 68: Movie Details - Key Information Improved
	Slide 69: Movie Details - Interaction
	Slide 70: Movie Details - Interaction
	Slide 71: Implementing the Movie Edit Page
	Slide 72: Implementing the Movie Edit Page
	Slide 73: Movie Edit - Form Fields
	Slide 74: Saving the Movie Edits
	Slide 75: Saving the Movie Edits
	Slide 76: Movie Edits - Basic Saving
	Slide 77: Movie Edits - Improved Saving
	Slide 78: Movie Edits - Improved Saving
	Slide 79: Validating the Movie Edits
	Slide 80: Validating the Movie Edits
	Slide 81: Movie Edits - Validation
	Slide 82: Recommendations with Playwright
	Slide 83: Best Practices with Playwright
	Slide 84: Best Practices with Playwright
	Slide 85: Thank you for joining

