
Concurrent Rendering
Adventures in React 18

 Maurice de Beijer

 The Problem Solver

 Microsoft MVP

 Freelance developer/instructor

 Twitter: @mauricedb

 Web: http://www.TheProblemSolver.nl

 E-mail: maurice.de.beijer@gmail.com

2ABL - The Problem Solver

The React
Newsletter

© ABL - The Problem Solver 3

http://bit.ly/ReactNewsletter

Course goal

 Learn about using <Suspense /> today
 Lazy loading of data

 Nest and/or parallelize <Suspense /> components as needed

 Error handling while suspended with an <ErrorBoundary />

 Learn about using concurrent mode tomorrow
 Using createRoot() to render a React 18 application

 The what and how of React concurrent mode

 Orchestrating <Suspense /> boundaries using <SuspenseList />

 Using startTransition() and/or useTransition() to defer work

Type it out
by hand?

“Typing it drills it into your brain much better than
simply copying and pasting it. You're forming new
neuron pathways. Those pathways are going to
help you in the future. Help them out now!”

© ABL - The Problem Solver 5

See you in the next video

Prerequisites
Install Node & NPM

Install the GitHub repository

© ABL - The Problem Solver 7

Install
Node.js & NPM

© ABL - The Problem Solver 8

https://bit.ly/3mgalIk

Clone the
GitHub
Repository

© ABL - The Problem Solver 9

https://bit.ly/3DfDA53
https://bit.ly/3DfDA53

Install NPM
Packages

© ABL - The Problem Solver 10

Following
Along

 Repository:
https://github.com/mauricedb/concurrent-rendering-adventures-in-react-18

 Slides:
http://www.theproblemsolver.nl/concurrent-rendering-adventures-in-react-18.pdf

© ABL - The Problem Solver 11

https://bit.ly/3D6PQVe
https://github.com/mauricedb/concurrent-rendering-adventures-in-react-18
http://www.theproblemsolver.nl/concurrent-rendering-adventures-in-react-18.pdf

See you in the next video

React 17

<Suspense />

<Suspense />

 Allows React to “suspend” rendering a component subtree
 Used when a (grand) child component is not ready to be rendered

 ECMAScript bundle containing the component isn’t loaded yet

 The data needed for a component to render isn’t available yet

 The “fallback” component will be rendered instead
 Replaces the complete children component tree

 Rendering is suspended when a promise is thrown
 And resumed when the promise resolves

SWR and
Suspense

 SWR is used in the application to load data
 A convenient hook to fetch data

 SWR makes it easy to start using suspense
 Add suspense: true to the <SWRConfig />

https://bit.ly/3ixFg1P

index.tsx

https://bit.ly/2ZZtQO1

UserList.tsx

https://bit.ly/3l5sRDW

AccountDetails.tsx

https://bit.ly/3l5TwQP

MovieDetails.tsx

https://bit.ly/3A97HZJ

The Result

See you in the next video

<Suspense /> & Errors

<Suspense />
& Errors

 If a suspense resource fails to load an error is thrown
 When requesting it during the render()

 Catch the error using an ErrorBoundary
 Just like other runtime errors in React lifecycle functions

 Error boundaries can be nested
 Just like suspense boundaries

index.tsx

https://bit.ly/3l5w86b

The Result

UserDetails.tsx

The Result

See you in the next video

Nesting <Suspense />

Nesting
<Suspense />

 Multiple suspense components can be nested

 React will use the closest parent <Suspense /> component
 Very useful to control what part of the UI is replaced by a fallback

👉There is a behavior change in React 18 with null fallback 👈

App.tsx

https://bit.ly/3BbmUuC

The Result

MovieDetails.tsx

https://bit.ly/3D6PQVe

The Result

See you in the next video

Parallel <Suspense />

Parallel
<Suspense />

 Multiple suspense boundaries can suspend in parallel
 React will suspend them all and show multiple fallback components

 If you want to render a component while others are still loading

 Multiple suspending components in a single <Suspense/> is also
fine

 Will resume when all resource promises are resolved

MovieDetails.tsx

https://bit.ly/3ourLUa

The Result

See you in the next video

React 18

React 18

 React 18 is still in alpha/preview version right now
 Daily publish to NPM using the @next and the @alpha tags

 npm install react@next react-dom@next --force

package.json

https://bit.ly/3B8l5yM

index.tsx

https://bit.ly/3B8lK32

See you in the next video

New hooks

New hooks

 useDeferredValue()
 Returns a deferred version of the value that may lag behind

 useTransition()
 Avoid undesirable states when waiting for content

 useSyncExternalStore()
 Enables React components to safely and efficiently read from a

mutable external source in Concurrent Mode

 Avoids tearing

 useId()
 Can be used to generate unique ID’s in an SSR-safe way

useId()

useId()

 Can be used to generate unique ID’s in a SSR-safe way

👉 Renamed from useOpaqueIdentifier() in alpha releases👈

LabelInput.tsx

The Result

See you in the next video

Using <SuspenseList />
Orchestrating <Suspense /> boundaries

Using
<SuspenseList />

 <SuspenseList /> will let you control how multiple <Suspense />
components render their fallback

 The order in which child components show when ready

 If multiple child fallbacks components are displayed

UserDetails.tsx

https://bit.ly/3l6Kq6w

The Result

See you in the next video

Concurrent Mode

React 17
rendering
components

User click
event

Event running

React 18
Concurrent
mode

Event running
with
concurrent
mode

See you in the next video

startTransition()
To defer lower priority work

PrimeNumbers.tsx

https://bit.ly/3a4VbzS

The Result

See you in the next video

Using useTransition()
To defer lower priority work and know about pending updates

Using
useTransition()

 The useTransition() hook can be used to control how React
renders when components suspend

 Prevent the fallback component being rendered immediately

 The new components will be rendered when:
 Their resources are ready

 The timeout is expired

 The “old” UI can use the isPending state when rendering

PrimeNumbers.tsx

https://bit.ly/3F8rXOS

The Result

startTransition()
vs
useTransition()

startTransition()

 Can be used anywhere

 No additional renders

useTransition()

 Needs to be used in a
functional component

 One additional render with
isPending

<Suspense /> & Transitions

<Suspense />
&
Transitions

 Suspense can cooperate with a startTransition()
 The new UI isn’t visible until the transition completes

UserList.tsx

https://bit.ly/3aw46dV

The Result

See you in the next video

Using useDeferredValue()

Using
useDeferredValue()

 The useDeferredValue() hook can be used create a deferred
version of the value that may “lag behind”

 Can prevent extra re-renders of expensive components

 https://reactjs.org/docs/concurrent-mode-reference.html#usedeferredvalue

https://reactjs.org/docs/concurrent-mode-reference.html#usedeferredvalue

PrimeRange.tsx

https://bit.ly/3iWjnt4

The Result

See you in the next video

Conclusion

 You can use <Suspense /> today
 Suspend when lazily loading components and/or fetching data

 Handle error with an <ErrorBoundary />

 Nest and/or parallelize as needed

 Concurrent mode
 Coming soon to a React application near you

 Can make large applications more responsive

 Render a React 18 application using createRoot()

 Use <SuspenseList /> to orchestrate <Suspense /> components

 Defer work with startTransition() and/or useTransition()

Maurice de Beijer

@mauricedb

maurice.de.beijer
@gmail.com

© ABL - The Problem Solver 86

