

Building Robust Web
Applications with
Test-Driven Development
and Playwright
Maurice de Beijer
@mauricedb

 Maurice de Beijer

 The Problem Solver

 Freelance developer/instructor

 Twitter: @mauricedb

 Web: http://www.theproblemsolver.dev/

 E-mail: maurice.de.beijer@gmail.com

© ABL - The Problem Solver 3

https://twitter.com/MauriceDB
http://www.theproblemsolver.dev/
mailto:maurice.de.beijer@gmail.com

What We'll
Build Today

 Movie Browsing Application
 Landing page with navigation

 List of top-rated movies

 Movie details page

 Movie editing functionality

 Learning Objectives
 TDD workflow in frontend development based on user stories

 Writing effective Playwright tests

 Building robust web applications

 Real-world testing scenarios

Type it out
by hand?

“Typing it drills it into your brain much better than
simply copying and pasting it. You're forming new
neuron pathways. Those pathways are going to
help you in the future. Help them out now!”

© ABL - The Problem Solver 5

Prerequisites
Install Node & NPM

Install the GitHub repository

© ABL - The Problem Solver 6

Install
Node.js & NPM

© ABL - The Problem Solver 7

https://git-scm.com/downloads
https://nodejs.org/en/

Following
Along

 Repo: https://github.com/mauricedb/tdd-playwright-24

 Slides: https://www.theproblemsolver.dev/docs/jsnation-us-2024.pdf

© ABL - The Problem Solver 8

https://github.com/mauricedb/tdd-playwright-24
https://www.theproblemsolver.dev/docs/jsnation-us-2024.pdf
https://github.com/mauricedb/tdd-playwright-24
https://github.com/mauricedb/tdd-playwright-24/commit/81315066e80753a62ff70f4f6abf32d3462b0648

The changes

© ABL - The Problem Solver 9

https://github.com/mauricedb/tdd-playwright-24/commits/main/

Clone the
GitHub
Repository

© ABL - The Problem Solver 10

https://github.com/mauricedb/tdd-playwright-24

Install NPM
Packages

© ABL - The Problem Solver 11

Start branch  Start with the 00-start branch
 git checkout --track origin/00-start

© ABL - The Problem Solver 12

Start the
application

© ABL - The Problem Solver 13

Introduction to Test-
Driven Development
(TDD)

What is Test-
Driven
Development?

 A software development approach where tests are written before
the actual code

 Tests drive the design and implementation of the code

 “Red-Green-Refactor” cycle

The TDD Cycle

 Write a failing test (Red)

 Write minimal code to make the test pass (Green)

 Refactor the code while keeping tests green

 Repeat…

Software
Testing
Pyramid

Benefits of
TDD

 Improved Code Quality
 Fewer bugs and defects

 Better code coverage

 Cleaner, more maintainable code

 Built-in documentation through tests

 Faster Development
 Catch bugs early in the development cycle

 Reduce debugging time

 More confident code changes

 Easier refactoring

 Better Design
 Forces modular design

 Reduces code coupling

 Promotes interface-driven development

 Makes code more testable

Common TDD
Misconceptions

 "TDD takes too much time"
 Initial investment pays off in reduced debugging and maintenance

 Faster identification of issues

 Less time spent on manual testing

 "I'll write tests later"
 Tests written after code tend to be incomplete

 Missing edge cases

 Code might not be designed for testability

 "TDD is only for backend development"
 Frontend can benefit greatly from TDD

 Ensures consistent UI behavior

 Catches regression issues early

Introduction to
Playwright
A powerful end-to-end testing framework for web
applications

What is
Playwright?

 Modern end-to-end testing framework

 Created and maintained as open source by Microsoft

 Support for modern browsers

 Cross-platform support

Key Features

 Auto-wait capabilities

 Network interception

 Mobile device emulation

 Multiple browser contexts

 Powerful debugging tools

Why
Playwright?

 Advantages
 Fast and reliable tests

 Cross-browser support out of the box

 Modern features like web sockets

 Rich debugging capabilities

 Strong TypeScript support

 Use Cases
 End-to-end testing

 Component testing

 Visual regression testing

 Performance testing

 Network monitoring

Playwright
Core Concepts

 Browser Contexts
 Isolated browser sessions

 Independent cookie/storage states

 Perfect for testing multi-user scenarios

 Auto-waiting
 Element availability

 Network requests

 Animations

 No need for explicit waits

 Locators
 Reliable element selection

 Built-in retry logic

 Multiple selection strategies

Combining
TDD and
Playwright

 Workflow
 Write a failing Playwright test (Red)

 Implement the feature

 Run tests and fix issues (Green)

 Refactor with confidence

 Benefits
 Consistent UI behavior

 Caught regression issues

 Documented features

 Confident deployments

Installing Playwright

Installing
Playwright

 Install Playwright from a terminal window in the root folder
 npm init playwright@latest

 The VS Code extension is a good alternative
 Also allows for executing tests

https://playwright.dev/docs/intro
https://playwright.dev/docs/getting-started-vscode

npm init
playwright

package.json

https://github.com/mauricedb/tdd-playwright-24/commit/e41f52f4de244f930effce2941b950f8003ea943

Playwright test
console mode

Playwright test
in UI mode

© ABL - The Problem Solver 32

Implementing the
Landing Page

Implementing
Landing Page

“As a movie enthusiast

I want to see a welcoming landing page

So that I can understand what the application offers and navigate to
different sections”

Landing Page -
Header Section

© ABL - The Problem Solver 35

https://github.com/mauricedb/tdd-playwright-24/commit/a62ae98e653e1fc4a5bdc17efcc84e494a7b6569

Best Practices
with
Playwright

 Test user visible behavior

 Prefer user-facing attributes to XPath or CSS selectors
 page.getByRole() to locate by explicit and implicit accessibility

attributes.

 page.getByLabel() to locate a form control by associated label's
text.

 page.getByPlaceholder() to locate an input by placeholder.

 page.getByText() to locate by text content.

 Use web first assertions
 Playwright will wait until the expected condition is met

Landing Page -
Header Section
with links

© ABL - The Problem Solver 37

https://github.com/mauricedb/tdd-playwright-24/commit/7154e3f5bfe318808e196c2be572f0ec3f824364

Playwright
configuration

 The Playwright configuration can prevent some repeated code

 And make it easier to update settings
 For example when running against a preview environment in the CI
 baseURL: process.env.PLAYWRIGHT_TEST_BASE_URL ?? 'http://localhost:3000’

 Group related tests
 test.describe()

 Use the test hooks that are executed before and after tests
 test.beforeEach(), test.afterEach()

 test.beforeAll(), test.afterAll()

playwright.
config.ts

https://github.com/mauricedb/tdd-playwright-24/commit/f725eb0d186fe1931f9444e359226f2099506eef

Landing Page -
Main Content

© ABL - The Problem Solver 40

https://github.com/mauricedb/tdd-playwright-24/commit/f725eb0d186fe1931f9444e359226f2099506eef

Break time

© ABL - The Problem Solver 41

Implementing the
Movie List

Implementing
the Movie List

“As a movie enthusiast

I want to browse through a list of movies

So that I can discover new films and see their ratings”

Playwright
test failure

 A Playwright doesn’t need to stop at the first failure
 Use expect.soft() to keep going after a failed expectation

Movies List -
Basic Movie List

© ABL - The Problem Solver 45

https://github.com/mauricedb/tdd-playwright-24/commit/cf8d156b029849a1e0e55c54c77da6ed239e59be

Movies List -
Grid Layout

“As a movie enthusiast

I want to see the movies in a responsive grid”

Movies List -
Grid Layout

© ABL - The Problem Solver 47

https://github.com/mauricedb/tdd-playwright-24/commit/5765ce2056f516e4be2321362b41505db0af641f

Playwright
test size

 Favor a few larger tests over many small ones
 Break larger tests into steps with test.step()

Movies List -
Responsive Grid

© ABL - The Problem Solver 49

https://github.com/mauricedb/tdd-playwright-24/commit/81315066e80753a62ff70f4f6abf32d3462b0648

Movies List -
Sorted by vote

“As a movie enthusiast

I want to see the movies sorted by vote average in descending order”

Movies List -
Sorted by vote

© ABL - The Problem Solver 51

https://github.com/mauricedb/tdd-playwright-24/commit/04495e1fa82313ae441baa33839e795ea58eb57e

Movies List -
Card
Component

“As a movie enthusiast

I want to see each movie in a card with title, poster, rating and
description”

Adding test
helpers

 Use accessibility options to make elements easier to find
 Like aria-label and page.getByLabel()

 Only use id or data-testid as a last resort

 Use data-value to add values in an unformatted format
 But only if a value isn’t easy to read from the DOM

Movies List -
Card Component

© ABL - The Problem Solver 54

https://github.com/mauricedb/tdd-playwright-24/commit/12381a8f0e0a1669be6f7cf492d31e6d99bedf01

Movies List -
12 Movies per
page

“As a movie enthusiast

I want to see each 12 movie cards at the time”

Movies List -
12 Movies per
page

© ABL - The Problem Solver 56

https://github.com/mauricedb/tdd-playwright-24/commit/2458a657dd8eb371da4681cda49b1c062ada801a

Movies List -
Pagination

“As a movie enthusiast

I want to be able to click a Next button and see more movies”

Movies List -
Pagination

© ABL - The Problem Solver 58

https://github.com/mauricedb/tdd-playwright-24/commit/7dc3e8689879f5b28b648f0aa9ac249515244964

Implementing the
Navigation Menu

Implementing
the Navigation
Menu

“As a user of the movie application

I want to have a consistent navigation menu

So that I can easily access different sections of the application”

Navigation
Menu

© ABL - The Problem Solver 61

https://github.com/mauricedb/tdd-playwright-24/commit/b5ef0df381ee15aa53136848a3e501b5726a172c

Navigation
Menu

© ABL - The Problem Solver 62

https://github.com/mauricedb/tdd-playwright-24/commit/b5ef0df381ee15aa53136848a3e501b5726a172c

Implementing the
Movie Details Page

Implementing
the Movie
Details Page

“As a movie enthusiast using the application

I want to view comprehensive details about a specific movie

So that I can make informed decisions about watching it and learn
more about the film”

Movie Details -
Key Information

© ABL - The Problem Solver 65

https://github.com/mauricedb/tdd-playwright-24/commit/08e05e0377e88a011d8244d501cfd9b9f3298ba5

Movie Details -
Key Information
Improved

 Requires the The Shawshank Redemption to be the first movie
 Might no longer be true in the future

 Adapting to the data returned can be more reliable

Movie Details -
Key Information
Improved

© ABL - The Problem Solver 67

https://github.com/mauricedb/tdd-playwright-24/commit/fadeab8c9f893b87281b37782b055769bc71160a

Movie Details -
Interaction

“As an administrator of the movie application

I want to be able to edit a movie in the database

So that I can maintain accurate and up-to-date movie details”

Movie Details -
Interaction

© ABL - The Problem Solver 69

https://github.com/mauricedb/tdd-playwright-24/commit/f39e5e77ead75d26cdb5ff2fb21e9434b0174b04

Implementing the
Movie Edit Page

Implementing
the Movie Edit
Page

“As an administrator of the movie application

I want to edit existing movie information in the database

So that I can maintain accurate and up-to-date movie details”

Movie Edit -
Form Fields

© ABL - The Problem Solver 72

https://github.com/mauricedb/tdd-playwright-24/commit/2fd2d1df3be3a5fa3d49e315b05c4595c03ebe98

Saving the Movie Edits

Saving the
Movie Edits

“As an administrator editing movie information

I want to save my changes to the movie database

So that updated movie information is persisted and immediately
available to users”

Movie Edits -
Basic Saving

© ABL - The Problem Solver 75

https://github.com/mauricedb/tdd-playwright-24/commit/9fcd72fe7d76ac3a329aa6ca2f377390eea52bab

Movie Edits -
Improved
Saving

 Beware: changing data can lead to flaky tests
 Reset to the database to a known state before each test

 Only make changes to newly added data
that doesn’t show up in other tests

 Or use Playwright network mocking
 Also useful to simulate and test errors like server not available

Movie Edits -
Improved Saving

© ABL - The Problem Solver 77

https://github.com/mauricedb/tdd-playwright-24/commit/c63382831e274b69b44aafd98b029e08327e99fd

Validating the Movie
Edits

Validating the
Movie Edits

“As an administrator submitting movie changes

I want feedback on the validity of my edits

So that I can correct any errors before saving to the database”

Movie Edits -
Validation

© ABL - The Problem Solver 80

https://github.com/mauricedb/tdd-playwright-24/commit/6c2435b258cfb45186ff51059f1e00c3b2b0b27b

Recommendations with
Playwright

© ABL - The Problem Solver 81

Best Practices
with
Playwright

 Test Organization
 Group related tests

 Use before/after hooks wisely

 Share common setup

 Test Reliability
 Use strong locators

 Handle dynamic content

 Consider network conditions

 Avoid flaky tests but enable retries

 Performance
 Reuse browser context when possible

 Prefer fewer larger tests with soft asserts

 Parallel test execution

 Minimize unnecessary actions

Best Practices
with
Playwright

 Test user visible behavior
 Don’t rely on things a real user doesn’t use like a class name or id

 Prefer user-facing attributes to XPath or CSS selectors
 page.getByRole() to locate by explicit and implicit accessibility

attributes.

 page.getByText() to locate by text content.

 page.getByLabel() to locate a form control by associated label's
text.

 page.getByPlaceholder() to locate an input by placeholder.

 Use web first assertions
 Playwright will wait until the expected condition is met

Thank you for joining

© ABL - The Problem Solver 84

Share your thoughts

https://x.com/intent/post?text=Building+Robust+Web+Applications+with+Test-Driven+Development+and+Playwright+by+%40mauricedb

	Default Section
	Slide 1
	Slide 2: Building Robust Web Applications with Test-Driven Development and Playwright
	Slide 3
	Slide 4: What We'll Build Today
	Slide 5: Type it out by hand?
	Slide 6: Prerequisites
	Slide 7: Install Node.js & NPM
	Slide 8: Following Along
	Slide 9: The changes
	Slide 10: Clone the GitHub Repository
	Slide 11: Install NPM Packages
	Slide 12: Start branch
	Slide 13: Start the application
	Slide 14: Introduction to Test-Driven Development (TDD)
	Slide 15: What is Test-Driven Development?
	Slide 16: The TDD Cycle
	Slide 17: Software Testing Pyramid
	Slide 18: Benefits of TDD
	Slide 19: Common TDD Misconceptions
	Slide 20: Introduction to Playwright
	Slide 21: What is Playwright?
	Slide 22: Key Features
	Slide 23: Why Playwright?
	Slide 25: Playwright Core Concepts
	Slide 26: Combining TDD and Playwright
	Slide 27: Installing Playwright
	Slide 28: Installing Playwright
	Slide 29: npm init playwright
	Slide 30: package.json
	Slide 31: Playwright test console mode
	Slide 32: Playwright test in UI mode
	Slide 33: Implementing the Landing Page
	Slide 34: Implementing Landing Page
	Slide 35: Landing Page - Header Section
	Slide 36: Best Practices with Playwright
	Slide 37: Landing Page - Header Section with links
	Slide 38: Playwright configuration
	Slide 39: playwright. config.ts
	Slide 40: Landing Page - Main Content
	Slide 41: Break time
	Slide 42: Implementing the Movie List
	Slide 43: Implementing the Movie List
	Slide 44: Playwright test failure
	Slide 45: Movies List - Basic Movie List
	Slide 46: Movies List - Grid Layout
	Slide 47: Movies List - Grid Layout
	Slide 48: Playwright test size
	Slide 49: Movies List - Responsive Grid
	Slide 50: Movies List - Sorted by vote
	Slide 51: Movies List - Sorted by vote
	Slide 52: Movies List - Card Component
	Slide 53: Adding test helpers
	Slide 54: Movies List - Card Component
	Slide 55: Movies List - 12 Movies per page
	Slide 56: Movies List - 12 Movies per page
	Slide 57: Movies List - Pagination
	Slide 58: Movies List - Pagination
	Slide 59: Implementing the Navigation Menu
	Slide 60: Implementing the Navigation Menu
	Slide 61: Navigation Menu
	Slide 62: Navigation Menu
	Slide 63: Implementing the Movie Details Page
	Slide 64: Implementing the Movie Details Page
	Slide 65: Movie Details - Key Information
	Slide 66: Movie Details - Key Information Improved
	Slide 67: Movie Details - Key Information Improved
	Slide 68: Movie Details - Interaction
	Slide 69: Movie Details - Interaction
	Slide 70: Implementing the Movie Edit Page
	Slide 71: Implementing the Movie Edit Page
	Slide 72: Movie Edit - Form Fields
	Slide 73: Saving the Movie Edits
	Slide 74: Saving the Movie Edits
	Slide 75: Movie Edits - Basic Saving
	Slide 76: Movie Edits - Improved Saving
	Slide 77: Movie Edits - Improved Saving
	Slide 78: Validating the Movie Edits
	Slide 79: Validating the Movie Edits
	Slide 80: Movie Edits - Validation
	Slide 81: Recommendations with Playwright
	Slide 82: Best Practices with Playwright
	Slide 83: Best Practices with Playwright
	Slide 84: Thank you for joining

