
Master Cypress
in 15 minutes a day
Maurice de Beijer - @mauricedb

Course Goals

Course Goals

 Learn what Cypress is
 And what it can do for you

 Understand what the best practices are
 And what not to do

 See how Cypress differs from other End to End testing tools
 Like Selenium, Nightwatch.js etc.

Why this course?
 Cypress is not hard to use most of the time

 Not knowing the best practices can trip you up

 Going beyond the basics can be tough

15 minutes  Can I really do this in 15 minutes a day?

See you in the next video

What is Cypress
And why use it?

What is
Cypress

• Cypress is a front end testing tool
• Built for the modern web

• Tests are easy to write
• Using simple JavaScript

• Time Travel runner lets you inspect test at each step
• Click on a step to see the state of the browser

• Automatic waiting for elements
• Makes tests more resilient

• Video recording of running test
• Helps debugging failing tests on the CI server

What is
Cypress

• Lets you fake the network
• Or use the real backend as appropriate

• Automatically retry
• Run flaky tests multiple times

• Many standard and 3rd party extensions
• Or write your own in JavaScript

• Can run in Docker containers
• Consistent cross platform behavior

• Runs inside the browser
• Not based on Selenium

Interactive
Test
Runner

Interactive
Test
Runner

Command
Line
Interface

Pros and Cons
of Cypress

Pros 👍

 Easy to get started

 🚀 Fast execution

 Automatic waiting on elements

 Access to elements outside the DOM

 Support for FireFox and Chromium
based browsers

 No driver dependencies

 ⌚Time travel and debuggability

 Uses the Mocha test framework

 Open source

 💵Mostly free

Cons 👎

 Only JavaScript or TypeScript

 No support for Safari

 Only a single bowser

 Only a single tab

See you in the next video

What is end to end testing

What is testing
“Software testing is an investigation conducted to provide
stakeholders with information about the quality of the software
product or service under test.”

-- Wikipedia --

The traditional
testing
pyramid

Manual

End to End

Integration testing

Unit testing

Unit Testing &
Code Coverage

Both windows
are fine

Source

https://twitter.com/ThePracticalDev/status/687672086152753152

A sturdy latch

Source

https://twitter.com/ThePracticalDev/status/850748070698651649

A better
testing
pyramid for
the web

Manual

End to End

Integration testing

Unit testing

End-to-end
Testing

“End-to-end testing is a methodology used to test whether the flow of
an application is performing as designed from start to finish. The
purpose of carrying out end-to-end tests is to identify system
dependencies and to ensure that the right information is passed
between various system components and systems.”

-- Techopedia --

End-to-end
Testing

 Test an application’s workflow from beginning to end
 Including AJAX requests to the backend

 Based on workflows the end user actually executes
 Using the same user interface, browser, network database etc.

See you in the next video

Personal introduction

Maurice de Beijer
Independent software developer and trainer

The Netherlands

Happily married

Independent software
developer & instructor
Since 1995

The React
Newsletter

http://bit.ly/ReactNewsletter
http://bit.ly/ReactNewsletter

See you in the next video

Prerequisites
Install Node & NPM

Install the GitHub starter repository

Following
Along

 Slides:
 http://theproblemsolver.nl/master-cypress-in-15-minutes-a-day.pdf

http://theproblemsolver.nl/master-cypress-in-15-minutes-a-day.pdf

Type it out
by hand?

“Typing it drills it into your brain much better than
simply copying and pasting it. You're forming new
neuron pathways. Those pathways are going to
help you in the future. Help them out now!”

Install Node.js  Minimal:
 Node version 12

https://nodejs.org/en/

See you in the next video

Creating a first Cypress test

The
Application

https://block-buster-film-reviews.azureedge.net/

Opening
Cypress

 Start Cypress using “npx cypress open”
 This will automatically download and run Cypress

 The first time it will create the Cypress a folder structure
 Including a number of example tests

Creating a first
Cypress test

 Create a new spec file in the /cypress/integration folder
 The spec file name must end with spec.js

 Call the context() function to create a group of specification
 The describe() function is an alias for context()

 Call the it() function to create a End to End specification
 Both context() and it() come from the Mocha test framework

Creating a first
Cypress test

https://bit.ly/3A4mXIB

Cypress
test runner

Running the
test

See you in the next video

Adding a package.json

Specifying the
Cypress version

 Right now we are always using the latest version of Cypress
 Instead of being explicit about what version to use

 Each developer/tester has to know to run “npx cypress open”
 Maybe look for it in the documentation

Adding a
package.json

 When using Node.js the normal way is to add a package.json
 And specify the dependencies with versions in there

 As well as add important scripts to execute

 Create a package.json with the “npm init” command

Adding
dependencies

 Add dependencies with “npm install <<package>>”
 Use the --save-dev option to register a development only package

 Use “npm install cypress --save-dev”

Adding scripts

 Add relevant scripts to the “scripts” section
 “cypress open”

 “cypress run”

 Execute with “npm run [script name]”

The package.json

https://bit.ly/3hjN9Ys

See you in the next video

Fixing a broken Cypress install

A broken
Cypress
Installation

Cypress
NPM
Package

 The Cypress NPM package is not complete
 It only contains part of the required bits

 The rest is installed into an application cache
 Once for ever version used

Cypress cache

Cypress cache

 Every version of Cypress is downloaded the first time it’s required
 And reused whenever needed

 Use the “cypress cache” command to manage the Cypress cache
 npx cypress cache path

 npx cypress cache list [–size]

 npx cypress cache prune

 npx cypress cache clear

Cypress cache

See you in the next video

The most important commands

cy.visit()

 Visit a URL in the browser
 Takes the URL to navigate to

 An optional options object with many settings

 https://docs.cypress.io/api/commands/visit

https://docs.cypress.io/api/commands/visit

cy.get()
 Queries the DOM for one or more elements

 Uses the jQuery selector engine

 https://docs.cypress.io/api/commands/get

https://docs.cypress.io/api/commands/get

.should()

 Check if a given condition is as expected
 Based on the Chai NPM package

 Often chain after a cy.get()

 .and() is an alias

 Check for example
 If an elements is visible and enabled

 A value is equal to another

 Many more…

 https://docs.cypress.io/api/commands/should

https://docs.cypress.io/api/commands/should

Asynchronous  Commands are asynchronous
 They not executed immediately but placed in a queue

Retry behavior

 Commands like get() and should() will retry upon failure
 By default 4 seconds

 The retry timeout can be configured
 Either globally or per command

Chainable  Most commands return a Chainable object

Top rated movies
Specs

https://bit.ly/3wlcx4f

See you in the next video

Adding IntelliSense

IntelliSense

 IntelliSense in VS Code can be added with:
 /// <reference types="Cypress" />

 Uses the TypeScript type declarations
 From the Cypress NPM package

IntelliSense

https://bit.ly/3jQEH4z

See you in the next video

Mocha hooks

Mocha hooks

 Mocha provides hooks to run code before and after tests
 The before() and after() run once per block

 The beforeEach() and afterEach() run for every test

 Using the beforeEach() is very convenient
 Use cy.visit() to load the right page

Using
beforeEach()

https://bit.ly/3dNZUII

See you in the next video

Cypress configuration

Cypress
configuration

 The cypress.json is used to store global configuration values
 Base URL

 Environment variables

 Retries

 Timeouts

 Etc.

 https://docs.cypress.io/guides/references/configuration#cypress-
json

https://docs.cypress.io/guides/references/configuration#cypress-json

IntelliSense  Add a $schema key to get IntelliSense
 https://on.cypress.io/cypress.schema.json

Cypress.config()
 The Cypress.config() function

 Retrieve a configuration value

 Override a configuration value for a single test

Command
Line

 Use the --config option to override config using the CLI
 Both with cypress run and cypress open

cypress.json

https://bit.ly/3xAuHk0

See you in the next video

Selecting DOM elements

CSS Selectors
 Cypress uses the jQuery selector engine

 Supports the standard CSS queries plus extension

 https://api.jquery.com/category/selectors/

https://api.jquery.com/category/selectors/

❌Anti-Pattern
 Using highly brittle selectors that are subject to change

 https://docs.cypress.io/guides/references/best-
practices#Selecting-Elements

https://docs.cypress.io/guides/references/best-practices#Selecting-Elements

✔Best Practice

 Isolate selectors from CSS or JS changes
 ❌ Avoid: cy.get('.btn.btn-large').click()

 Using data-* attributes
 ✔Use: cy.get('[data-cy=submit]').click()

Recommendations

https://bit.ly/2SXAOzG

.find()
 The .find() function searches descendants of a previous selection

 Must be chained of a cy.get() or similar function

 https://docs.cypress.io/api/commands/find

https://docs.cypress.io/api/commands/find

.within()

 Don’t store the result of a command in a variable
 ❌You will not get a consistent result

 Use the .within() function
 To scope queries to a previous result

 https://docs.cypress.io/api/commands/within

https://docs.cypress.io/api/commands/within

.eq()
 Use the eq() function to get a specific element from a collection

 A negative index counts from the end

 https://docs.cypress.io/api/commands/eq

https://docs.cypress.io/api/commands/eq

home.spec.js

https://bit.ly/3r1InC9

See you in the next video

Querying by text

cy.contains()

 Searches for a DOM element based on the text
 Based on a string or regular expression

 A string based search is case sensitive
 Can be controlled with the matchCase option

 Can both be use as a top level or a child command

cy.contains()

 Always returns a single DOM element
 The first in case of multiple matches

 Sometimes returns a higher level DOM element
 With buttons, links and labels

 Can be controlled with a selector

home.spec.js

https://bit.ly/3eq2mWa

See you in the next video

Aliases

Aliases

 DOM queries can be aliased for later reuse
 Alias a query:
cy.get('.menu-left a:visible').as('nav-links')

 Use the alias:
cy.get('@nav-links').eq(0).click()

 Aliases can also be use with other concepts
 AJAX requests, spies etc.

 More about that in another video

Aliases and
Retries

 The query is executed when first defined
 And the result reused later

 Querying will happen again when assertions fail

Register an
alias with .as()

https://bit.ly/2VGX7KW

Using an alias
with .get()

https://bit.ly/2VGX7KW

The result

See you in the next video

Interacting with Elements

Common
actions

 Input actions:
 Typing into inputs

 Checking checkboxes

 Selecting options

 Etc.

 Mouse actions:
 Clicking

 Scrolling

 Etc.

See you in the next video

Clicking DOM elements

cy.click()

 With cy.click() you can click on a DOM element
 All events are simulated by Cypress

 The element will scroll into view

 You can specify the click position
 With coordinates or a position string

 Cypress checks if the element is enabled and visible
 Use { force: true } to override when needed

 https://docs.cypress.io/api/commands/click

https://docs.cypress.io/api/commands/click

top-rated-
movies.spec.js

https://bit.ly/3z5f5p4

See you in the next video

Typing text

cy.type()

 With cy.type() you can simulate typing
 Works with <input> and <textarea>

 Special keys can be entered using {} expressions
 Like {enter} or {backspace}

 Or modifier keys like {alt} or {ctrl}

 There is a 10 ms delay between key events
 Makes the event flow more realistic

 https://docs.cypress.io/api/commands/type

https://docs.cypress.io/api/commands/type

todo-list.spec.js

https://bit.ly/3DIhaue

todo-list.spec.js

https://bit.ly/3DIhaue

settings.spec.js

https://bit.ly/3kF4bkb

todo-list.spec.js

https://bit.ly/3DIhaue

See you in the next video

Radio buttons & checkboxes

cy.check()
 With cy.check() you can check an item

 Works with <input type="radio"> and <input type="checkbox">

 https://docs.cypress.io/api/commands/check

https://docs.cypress.io/api/commands/check

settings.spec.js

https://bit.ly/3yyioUO

See you in the next video

Select elements

cy.select()

 With cy.select() you can select an option
 Works with <select>

 Use either the visible text or the value
 Use an array with multiselecting

 https://docs.cypress.io/api/commands/select

https://docs.cypress.io/api/commands/select

settings.spec.js

https://bit.ly/3zyC0d1

See you in the next video

Manipulating the value

Manipulating
Values

 Some input elements are harder to manipulate like an end user
 For example:

 <input type="date"/>

 <input type="range"/>

 Manipulate the value directly using:
 cy.get("input[type=range]")

.invoke("val", 25).trigger("change")

 Note: Sometimes you need to trigger the input event
 Instead of change event

settings.spec.js

https://bit.ly/3n41jOR

See you in the next video

Validating the value

Validating the
value

 Validating inputs is normally done using the .should() function

 Many validation options you can use
 Have a specific value

 Is checked or not checked

 Is empty

 Etc.

 https://docs.cypress.io/api/commands/should

https://docs.cypress.io/api/commands/should

settings.spec.js

https://bit.ly/3vlrHrd

See you in the next video

Network Requests & Cypress

Network
Requests

 Making network requests with cy.request()
 Dealing with cookies

 Handling error responses

 Intercepting network requests with cy.intercept()
 Waiting for request to have finished

 Inspecting the request or response

 Faking the response message

See you in the next video

Book Search

Book Search

https://book-search.azureedge.net/search/intitle/The+Hitchhiker's+Guide+to+the+Galaxy

GitHub

https://github.com/mauricedb/book-search

search.spec.js

https://bit.ly/39gUnHI

Cypress open

See you in the next video

Intercepting Requests

cy.intercept()

 With cy.intercept() you can spy on network requests
 Both XMLHttpRequest and fetch requests

 Enables waiting for network requests to finish
 Before proceeding with a test

 Intercept AJAX requests
 Assert the request message

 Fake response messages

 Intercept AJAX responses
 Delay a response

 Use the response in the test body

 https://docs.cypress.io/api/commands/intercept

https://docs.cypress.io/api/commands/intercept

cy.intercept()

https://bit.ly/3jaXG8I

See you in the next video

Cypress.minimatch()

Cypress.minimatch()

 Cypress uses the minimatch NPM package to match URL’s

 Can be used to debug URL patterns
 Available using Cypress.minimatch()

 https://docs.cypress.io/api/utilities/minimatch

 https://github.com/isaacs/minimatch#minimatch

https://www.npmjs.com/package/minimatch
https://docs.cypress.io/api/utilities/minimatch
https://github.com/isaacs/minimatch#minimatch

Cypress.minimatch()

See you in the next video

cy.route() & cy.server()

cy.route()
cy.server()

 Both cy.route() and cy.server() have been deprecated
 Use cy.intercept() instead!

See you in the next video

Waiting for a response

cy.wait()

 Waits for a network request to complete
 It can wait on multiple requests

 Fails the test if the requests doesn’t complete in time

 https://docs.cypress.io/api/commands/wait

https://docs.cypress.io/api/commands/wait

cy.wait()

https://bit.ly/3G5nQ6S

See you in the next video

Faking AJAX responses

Faking AJAX
responses

 Use a staticResponse to return a predetermined response
 Preventing the original AJAX request

 Set the statusCode, body and/or headers options as needed

 The fixture option loads a file from the cypress/fixtures folder
 The fixture location is configurable

 https://docs.cypress.io/api/commands/intercept#staticResponse-lt-
code-gtStaticResponselt-code-gt

https://docs.cypress.io/api/commands/intercept#staticResponse-lt-code-gtStaticResponselt-code-gt

Faking AJAX
responses

Pro’s

 Faster

 No dependencies on the
backend services

 No need to reset the DB
between tests

 No issues with external API’s

Con’s

 Doesn’t test the application
as it will be used

 The API response might be
updated

search.spec.js

https://bit.ly/3vjLgjV

See you in the next video

Intercepting the response

Intercepting
the response

 Using cy.wait()with an AJAX request yields the response
object

 With a JSON body object if appropriate

 Use the response data to test the UI elements

 https://docs.cypress.io/api/commands/wait#Yields

https://docs.cypress.io/api/commands/wait#Yields

search.spec.js

https://bit.ly/3pgJQ8V

See you in the next video

Making network requests

cy.request()

 Using cy.request() you can make network requests from a test
 Useful for testing your API’s

 Submitting URL encoded forms

 Calling an API to seed test data

 Etc…

 https://docs.cypress.io/api/commands/request

https://docs.cypress.io/api/commands/request

Login example

https://bit.ly/3vjhyvc

request.spec.js

https://bit.ly/3vjhyvc

See you in the next video

Continuous Integration

Continuous
Integration

 Run your Cypress tests as part of your CI process
 Make sure all tests pass before merging a pull request

 Tests need to run against the local code in the PR
 Run your application with a development server

 The steps can vary between different environments
 But the same principal applies everywhere

See you in the next video

CI using GitHub Actions

GitHub Actions

 Run Cypress as part of a GitHub CI/CD pipeline
 Only deploy the application if the tests pass

 Run the development server on the GitHub infrastructure
 Run the Cypress tests against this GitHub hosted server

 The cypress-io/github-action often makes this easy
 Supports most of the common use cases

 https://docs.cypress.io/guides/continuous-integration/github-actions

https://docs.cypress.io/guides/continuous-integration/github-actions

cypress-io.yml

https://bit.ly/3j9IfxN

See you in the next video

Cypress Continuous
Integration Steps

Cypress CI Steps

 The basic steps for a Cypress continuous integration process are:
1. Get the latest version of the application

2. Run npm install

3. Start the web server

4. Execute a cypress run

5. Report the result

Booting the
web server

 Booting the web server can be tricky
 It should not block the process

 The Cypress tests should only start when the app is available

 The start-server-and-test NPM package is very useful

https://github.com/bahmutov/start-server-and-test

cypress-io.yml

https://bit.ly/2YQEtSx

See you in the next video

Using a Docker container

Docker
containers

 Using Docker containers can help create a consistent environment
 The same runtime locally and on the CI server

 Required when doing visual regression testing
 Often a good approach

 https://hub.docker.com/r/cypress/included

https://hub.docker.com/r/cypress/included

cypress-io.yml

https://bit.ly/3n5Mj3d

See you in the next video

Flaky tests

Flaky tests

 Flaky tests are tests that sometimes fail and sometimes pass
without any change in code

 Cypress can automatically retry failing tests to detect flakiness
 Helps prevent a complete CI build from failing

 The underlying flaky test should still be fixed

cypress.json

https://bit.ly/3vCE2aJ

See you in the next video

The Cypress Dashboard

Cypress
Dashboard

 Makes it easy to see what is happening on the CI server

 Saves a video of the test running

 Not required, totally optional
 This is a paid for option

 With a limited free tier to get started

Cypress
Dashboard

https://bit.ly/3m3rLJe

cypress-io.yml

https://bit.ly/2XAQ7AG

package.json

https://bit.ly/3pHpw0H

The dashboard

See you in the next video

Local GitHub Actions

Local GitHub
Actions

 Using Act you can run GitHub Actions on a local machine
 Much easier to test and debug actions

 Runs in a local Docker container

 Cypress tests needs to run in a cypress/included image
 To prevent: Your system is missing the dependency: Xvfb

 Use a .secrets and/or a .env file to configure the environment
 Or skip steps if needed

https://github.com/nektos/act

Running Act

See you in the next video

Extending Cypress

Extending
Cypress

 Cypress can be extended with commands and tasks

 A custom command run in browser
 Just like cy.get()

 A task runs in the Cypress backend Node process
 Not limited by the browsers API

See you in the next video

Adding Custom Commands

Custom
Commands

 Commands can be used to add new commands to the cy object
 Or overwrite already existing ones

 Normally added in cypress/support/commands.js

 Commands can either be parent, child or dual commands
 Depending on how they are called

commands.js

https://bit.ly/3qaco2I

search.spec.js

https://bit.ly/3FiskWN

See you in the next video

Adding Child Commands

Adding Child
Commands

 Child commands are chained of another command
 Either a parent or another child command

 Add the prevSubject option
 Either true for any previous child

 Or element, document or window to specify the type of subject

 They receive the current subject as a parameter
 And any additional parameters

commands.js

https://bit.ly/3GXX0Nn

search.spec.js

https://bit.ly/3ecsdQA

See you in the next video

Writing Dual Commands

Dual
Commands

 Dual commands can be used as both parent or child commands
 Useful for some commands

 Specify that the prevSubject is optional
 Will be undefined when used

commands.js

https://bit.ly/3pg8QwB

search.spec.js

https://bit.ly/3H46Ai1

See you in the next video

Logging Custom Commands

 Using Cypress.log() you can add custom log messages for commands
 Recommended for custom commands

 There is a cy.log() for simple messages

 Often you will want to suppress nested log messages
 Use the { log: false } options

commands.js

https://bit.ly/3mmafjg

See you in the next video

Better Command Logging

Better
Command
Logging

 Cypress can show additional debug information
 When you open the dev tools console and click on a command

 The Cypress.log() function will accept a consoleProps() function
 The result is printed to the dev tools console on click

Console
Output

commands.js

https://bit.ly/3eZX0Rj

See you in the next video

Adding Custom Tasks

Custom Tasks

 Task are functions that run in the node environment of Cypress
 Unlike a command that executes in the browser

 Tasks always need to return a value or a promise of a value
 Or null in the case of no explicit value

 Arguments and result values need to be serializable

 Tasks can be started with the cy.task() command
 The result is passed to a then() handler

 Each task has a default timeout of taskTimeout (1 minute)
 But that can be overridden using the timeout option

plugins/index.js

https://bit.ly/3JPZPCD

search.spec.js

https://bit.ly/330z1yT

See you in the next video

Combining
Tasks & Commands

Combining
Tasks & Commands

 Tasks are great to execute Node.js code
 But the cy.task() syntax with parameters can be akward

 Use custom commands to make tasks easier to use
 Including IntelliSense in Visual Studio Code

 And type checking when using TypeScript

commands.js

https://bit.ly/3HGvkNm

search.spec.js

https://bit.ly/3f5Khwu

See you in the next video

Cypress Testing Library

Cypress
Testing
Library

 Test your UI components in a more user-centric way
 Users don’t use CSS queries

 Allows better queries within Cypress
 Queries are often bases on accessibility

 DOM/React/Vue/Angular/Svelte Testing Library
 Also usable with Jest

 Using the same query functions

See you in the next video

Tip & Tricks

Tip & Tricks

See you in the next video

IntelliSense in
Visual Studio Code

IntelliSense  Add a reference to a package types using triple slash directives
 /// <reference types="cypress" />

See you in the next video

Configuring ESLint

Configuring
ESLint

 Install the eslint-plugin-cypress NPM package

 Extend the plugin:cypress/recommended in your ESLint config

https://www.npmjs.com/package/eslint-plugin-cypress

package.json

https://bit.ly/3p8v6ZB

See you in the next video

Faking Math.random()

Faking
Math.random()

 The cy.stub() command will let fake an existing function
 Including native browser functions

 It returns a Sinon.js stub

 A cy.visit() reloads the page and resets the stub

 https://docs.cypress.io/api/commands/stub

https://docs.cypress.io/api/commands/stub

random.spec.js

https://bit.ly/3jTbfdc

See you in the next video

Overriding the configuration

Overriding the
configuration

 You can override the Cypress runtime configuration as needed
 Using the --config command line option

 Useful to run the Cypress tests against another base URL
 Like an acceptance environment

package.json

https://bit.ly/3pQ7qYq

See you in the next video

Data driven tests

Data driven tests

 Writing tests that validate the same sort of thing is common
 The only differences are the values used

 Mocha has no describe.each() or it.each() by default
 Easy to add using cypress-each

 Can also easy to do with a simple JavaScript loop

https://www.npmjs.com/package/cypress-each

search.spec.js

https://bit.ly/3EQXCDZ

Data driven tests

See you in the next video

Maurice de Beijer

@mauricedb

maurice.de.beijer
@gmail.com

https://twitter.com/MauriceDB
mailto:maurice.de.beijer@gmail.com

