

Next.js 15 Development
Bootcamp
Maurice de Beijer
@mauricedb

 Maurice de Beijer

 The Problem Solver

 Freelance developer/instructor

 Twitter: @mauricedb

 Web: https://www.theproblemsolver.dev/

 E-mail: maurice.de.beijer@gmail.com

© ABL - The Problem Solver 3

https://twitter.com/MauriceDB
https://www.theproblemsolver.dev/
mailto:maurice.de.beijer@gmail.com

Topics

 Why use Next.js

 Creating a new Next.js application

 Generating a landing page using Vercel V0

 Adding a Postgres SQL database using Docker

 Adding the Prisma ORM with the database schema

 Seeding the database with data

 Adding client-side interactions and state

 Deploying the application to Vercel

© ABL - The Problem Solver 4

Type it out
by hand?

“Typing it drills it into your brain much better than
simply copying and pasting it. You're forming new
neuron pathways. Those pathways are going to
help you in the future. Help them out now!”

© ABL - The Problem Solver 5

Prerequisites
Install Node, NPM & Docker

© ABL - The Problem Solver 6

Install
Node.js & NPM

© ABL - The Problem Solver 7

https://git-scm.com/downloads
https://nodejs.org/en/
https://docs.docker.com/get-started/get-docker/

VS Code

Or Cursor

Following
Along

 Repo: https://github.com/mauricedb/next-15-bootcamp

 Slides: https://www.theproblemsolver.dev/docs/next-15-bootcamp.pdf

© ABL - The Problem Solver 10

https://github.com/mauricedb/next-15-bootcamp
https://www.theproblemsolver.dev/docs/next-15-bootcamp.pdf
https://github.com/mauricedb/next-15-bootcamp/commit/7e1188640413df8dde60e7a940813eae79c03308

The changes

© ABL - The Problem Solver 11

https://github.com/mauricedb/next-15-bootcamp/commits/main/

The
application

© ABL - The Problem Solver 12

http://localhost:3000/

Why use Next.js 15

Why use
Next.js

https://nextjs.org/

Why use
Next.js

https://nextjs.org/

Why use
Next.js

 React 19 Support
 It provides full compatibility with React 19, giving you access to the

latest React features like Server Components improvements,
enhanced Suspense behavior, and better concurrent rendering
capabilities.

 React Server Components
 Server Components have been refined with better streaming

support, improved error boundaries, and more predictable behavior,
making it easier to build applications that render efficiently on the
server.

 Great Developer Experience
 The development server is faster with better hot module

replacement. The framework includes enhanced error messages,
better debugging tools, and improved TypeScript integration that
makes development more productive.

Why use
Next.js

 Enhanced App Router
 The App Router continues to mature with better performance, more

stable APIs, and improved data fetching patterns. This gives you
more flexibility in how you structure and render your applications.

 Performance Improvements
 Next.js 15 introduces significant performance optimizations,

including better bundle splitting, improved tree shaking, and
enhanced caching mechanisms.

 It supports partial prerendering (PPR) as a stable feature, allowing
you to combine static and dynamic content more efficiently.

 Turbopack Integration
 Next.js 15 includes better integration with Turbopack (Webpack's

successor), providing faster build times and more efficient bundling,
especially for larger applications.

Creating a new
Next.js application

Creating a new
Next.js application

 Creating a new project using a wizard with a questionnaire
 npx create-next-app@latest

Creating a new
Next.js application

 Creating a project based on a Vercel Next.js example
 npx create-next-app@latest my-app1 --example
with-styled-components

 See https://github.com/vercel/next.js/tree/main/examples

 Create a new project based on another example
 npx create-next-app@latest my-app1 --example
https://github.com/mui/material-
ui/tree/master/examples/material-ui-nextjs-ts

https://github.com/vercel/next.js/tree/main/examples

Creating a new
Shadcn/Next.js
application

 When using Shadcn/ui there is a shortcut
 npx shadcn@latest init

Creating a new
Next.js application

Creating a new
Next.js
application

© ABL - The Problem Solver 23

Generating a landing
page using Vercel V0

Generating a
landing page
using Vercel V0

 Rapid prototyping with complete projects
 Generates full Next.js applications with proper folder structure,

configuration, and git setup that you can immediately download and run
locally

 Modern Next.js best practices built-in
 Uses the latest App Router, Server Actions, TypeScript, and Tailwind CSS

automatically, keeping your code current with framework standards

 Real-time interactive development
 Preview and test your application instantly in the browser while making

changes through natural language prompts, no local setup required

 Production-ready code quality
 Generates clean, well-organized code following industry best practices

rather than throwaway prototypes, with integrated shadcn/ui
components

 Accessible to non-developers
 Enables designers, product managers, and entrepreneurs to build

functional web applications using plain English descriptions rather than
requiring deep coding knowledge

The Prompt

https://github.com/mauricedb/next-15-bootcamp/blob/main/prompts/1-home-page.md

Generating a
landing page
using Vercel V0

https://v0.dev/chat/aqlGcjwNivf

Generating a
landing page
using Vercel V0

https://v0.dev/chat/aqlGcjwNivf

Add to
codebase

 npx shadcn@latest add "https://v0.dev/chat/b/b_uCxq9uwB2Qu"

https://v0.dev/chat/aqlGcjwNivf

Placeholder
image

 Not: the placeholder image is not added to the project
 https://github.com/mauricedb/next-15-

bootcamp/blob/main/public/placeholder.svg

https://github.com/mauricedb/next-15-bootcamp/blob/main/public/placeholder.svg
https://github.com/mauricedb/next-15-bootcamp/blob/main/public/placeholder.svg

Generating a
landing page
using Vercel V0

© ABL - The Problem Solver 31

Using shared layouts

Using shared
layouts

 Consistent UI structure across pages
 Layout components allow you to define shared elements like headers, navigation,

and footers once and automatically apply them to multiple pages, ensuring a
cohesive user experience throughout your application.

 Reduced code duplication
 Instead of importing and wrapping the same layout components in every page

file, you can define the layout once and have it automatically wrap all pages in
that route segment, leading to cleaner and more maintainable code.

 Improved performance through persistent state
 Layout components remain mounted when navigating between pages that share

the same layout, preserving component state and avoiding unnecessary re-
renders of common UI elements like navigation menus or sidebars.

 Hierarchical layout composition
 The App Router's nested layout system allows you to create sophisticated layout

hierarchies where different route segments can have their own layouts that
compose together, enabling complex page structures with minimal code.

 Better SEO and metadata management
 Layouts provide a centralized place to define page metadata, title templates, and

other SEO-related elements that should be consistent across sections of your site,
making it easier to maintain proper search engine optimization.

Using shared
layouts

https://github.com/mauricedb/next-15-bootcamp/commit/914f102284cd26bab04a92e65cfd28eac683ba24

Using shared
layouts

© ABL - The Problem Solver 35

https://github.com/mauricedb/next-15-bootcamp/commit/914f102284cd26bab04a92e65cfd28eac683ba24

Rendering movie cards

Rendering
movie cards

 We want the user of the app to be able to pick movies to compare
 We will use Vercel V0 again to generate the components

 For now, we will use some hard coded data

Rendering
movie cards

https://github.com/mauricedb/next-15-bootcamp/blob/main/prompts/2-movies-page.md

Rendering
movie cards

https://v0.dev/chat/owZnedbNZE0

Rendering
movie cards

 npx shadcn@latest add "https://v0.dev/chat/b/b_uCxq9uwB2Qu"

https://v0.dev/chat/owZnedbNZE0

Rendering
movie cards

© ABL - The Problem Solver 41

https://v0.dev/chat/owZnedbNZE0

Adding a Postgres SQL
database using Docker

Why use
Docker?

 Environment consistency
 Every developer on your team gets exactly the same database version,

configuration, and extensions, eliminating "works on my machine"
issues that plague traditional local installations.

 Zero installation complexity
 Skip the headache of installing Postgres natively, managing system

services, or dealing with permission issues. One docker run command
gets you a fully functional database.

 Isolated and disposable
 Each project can have its own containerized database that won't

interfere with other projects or your system. When you're done, simply
delete the container with no leftover files or configurations.

 Resource control
 Easily limit memory and CPU usage for your development database,

preventing it from consuming too many system resources during
intensive operations.

 Quick reset capabilities
 Corrupted data or need a fresh start? Destroy and recreate your

database container in seconds rather than manually dropping/recreating
schemas or reinstalling software.

Adding a
Postgres SQL
database

https://github.com/mauricedb/next-15-bootcamp/commit/7e1188640413df8dde60e7a940813eae79c03308

Adding a
Postgres SQL
database

© ABL - The Problem Solver 45

https://github.com/mauricedb/next-15-bootcamp/commit/7e1188640413df8dde60e7a940813eae79c03308

Adding the Prisma ORM

Adding the
Prisma ORM

https://www.prisma.io/orm

Adding the
Prisma ORM

 Type Safety Throughout
 Prisma generates TypeScript types automatically from your

database schema, ensuring complete type safety from database
queries to your Next.js components, eliminating runtime errors from
type mismatches.

 Seamless API Route Integration
 Prisma's query syntax works perfectly in Next.js API routes, server

components and server actions, providing clean database
operations without complex SQL or connection management
overhead.

 Excellent Developer Experience
 Prisma Studio provides a visual database browser, while the Prisma

CLI offers schema migration tools and database seeding capabilities
that streamline development workflow.

 Database Agnostic Flexibility
 Switch between PostgreSQL, MySQL, SQLite, MongoDB, and other

databases without changing your application code, making it easy to
adapt to different deployment environments.

Adding the
Prisma ORM

 Optimized for Modern Next.js Features
 Works seamlessly with App Router, Server Components, and React

Server Components, allowing you to fetch data directly in
components without additional API layers.

 Built-in Connection Pooling
 Handles database connections efficiently, particularly important in

serverless Next.js deployments where connection management can
be challenging.

 Powerful Migration System
 Prisma Migrate tracks schema changes and generates migration

files automatically, making database versioning and deployment
straightforward across different environments.

 Query Optimization and Caching
 Provides query result caching and includes tools to analyze and

optimize database performance, crucial for Next.js applications that
need fast response times.

Adding the
Prisma ORM

https://github.com/mauricedb/next-15-bootcamp/commit/f89d9a65fc6a4016c59b545f1588019be19bf30a

Adding the
Prisma ORM

https://github.com/mauricedb/next-15-bootcamp/commit/f89d9a65fc6a4016c59b545f1588019be19bf30a

Adding the
Prisma ORM

https://github.com/mauricedb/next-15-bootcamp/commit/f89d9a65fc6a4016c59b545f1588019be19bf30a

Adding the
Prisma ORM

https://github.com/mauricedb/next-15-bootcamp/commit/f89d9a65fc6a4016c59b545f1588019be19bf30a

Adding the
Prisma ORM

https://github.com/mauricedb/next-15-bootcamp/commit/f89d9a65fc6a4016c59b545f1588019be19bf30a

Adding the
Prisma ORM
(Next.js)

© ABL - The Problem Solver 55

https://github.com/mauricedb/next-15-bootcamp/commit/f89d9a65fc6a4016c59b545f1588019be19bf30a

Adding the
database schema

Adding the
database schema

 Prisma database schemas
 Prisma uses a schema.prisma file as a single source of truth that

defines your database structure, models, and relationships in a
declarative format.

 This schema serves as the foundation for Prisma's code generation,
allowing it to automatically create type-safe client code that matches
your exact database structure.

 Migrations are created in development to do schema updates
 prisma migrate dev --name <migration name>

 Migrations are executed in production to update the production DB
 prisma migrate deploy

Adding the
database schema

https://github.com/mauricedb/next-15-bootcamp/commit/7acef173f53b0c06a762df98397d8f1a1b5f431f

Adding the
database schema

© ABL - The Problem Solver 59

https://github.com/mauricedb/next-15-bootcamp/commit/7acef173f53b0c06a762df98397d8f1a1b5f431f

Seeding the database

Seeding the
database

 Consistent Development Environment
 Database seeding ensures all developers on your team start with the

same baseline data, eliminating inconsistencies that can cause bugs to
appear on some machines but not others and making debugging more
predictable across different development setups.

 Faster Feature Development and Testing
 Having realistic sample data immediately available allows developers to

test user interfaces, business logic, and edge cases without manually
creating test records every time they reset their local database or
onboard new team members.

 Automated Deployment Pipeline Integration
 Seed scripts can be integrated into your CI/CD pipeline to populate

staging and testing environments with known data sets, enabling
automated testing scenarios and providing consistent environments for
QA teams to validate features.

 Realistic Data Relationships and Volume
 Well-designed seed data includes proper foreign key relationships,

realistic data volumes, and edge cases that mirror production scenarios,
helping identify performance issues and relationship problems early in
development rather than after deployment.

Seeding the
database

https://github.com/mauricedb/next-15-bootcamp/commit/bd178f8bdd7fac919005cfcd2f893b10df81ba1d

Seeding the
database

https://github.com/mauricedb/next-15-bootcamp/commit/bd178f8bdd7fac919005cfcd2f893b10df81ba1d

Seeding the
database

© ABL - The Problem Solver 64

https://github.com/mauricedb/next-15-bootcamp/commit/bd178f8bdd7fac919005cfcd2f893b10df81ba1d

Using data from the DB

Using data
from the DB

 Direct Database Queries in Components
 Server components allow you to write Prisma database queries directly inside React

components that render on the server, eliminating the need for separate API routes or
data fetching layers for many common use cases like displaying lists or detail pages.

 Async Component Rendering
 React 19 server components can be async functions, meaning you can use await directly

in component code to fetch data from Prisma before rendering, making data fetching
feel more natural and reducing the complexity of managing loading states for initial
page loads.

 Improved Performance and SEO
 Since Prisma queries execute on the server and components render with data already

available, pages load faster with complete HTML content, improving SEO and
eliminating the "loading spinner then content" pattern that hurts user experience and
search rankings.

 Reduced Client-Server Roundtrips
 Server components with embedded Prisma queries eliminate the need for separate API

calls after page load, reducing network requests and improving perceived performance,
especially for data that doesn't need to be dynamically updated on the client.

 Simplified Error Handling and Security
 Database connection strings and Prisma client configuration remain server-side only,

improving security while allowing you to handle database errors closer to where queries
are executed rather than managing error states across API boundaries.

Server vs Client
Components

 Server Components by Default
 In React 19 with Next.js app router, components are server components by default, meaning

they render on the server during build time or request time, have access to server-side
resources like databases and file systems, and cannot use browser-specific APIs or event
handlers.

 Client Component Declaration
 To create a client component that runs in the browser, you must add the 'use client' directive at

the very top of your component file before any imports, which tells React to hydrate and run
this component on the client side with full interactivity.

 Interactivity and State Management
 Client components can use React hooks like useState, useEffect, and event handlers like

onClick, while server components cannot use any interactive features, browser APIs, or state
management since they only exist during server rendering.

 Bundle Size and Performance Trade-offs
 Server components don't add to your JavaScript bundle size since they render on the server,

while client components increase bundle size and require hydration, so you should only mark
components as client components when interactivity is actually needed.

 Data Fetching Patterns
 Server components can directly access databases, APIs, and server resources during rendering,

while client components must fetch data through client-side methods like fetch() calls to API
routes or external endpoints after the component mounts.

 Component Composition Rules
 Server components can import and render client components, but client components cannot

directly import server components, though server components can be passed as props or
children to client components for flexible architectures.

Using data
from the DB

© ABL - The Problem Solver 68

https://github.com/mauricedb/next-15-bootcamp/commit/8dd5aea2afd735bbdd1014f1ab1fc90b82210851#diff-135961709a13b79fdc2b79139b07749960448e184e2e303399f3b6409fd46e33

Adding client-side
interactions and state
Using Valtio - Proxy state made simple ☺

https://valtio.dev/

Adding client-
side
interactions
and state

 Proxy-Based Reactivity
 Valtio uses JavaScript proxies to automatically track state mutations and re-render

components only when the specific data they access changes, eliminating the need for manual
dependency arrays or complex state update patterns that can cause unnecessary re-renders.

 Mutable State Updates
 Unlike Redux or Zustand, Valtio allows you to directly mutate state objects using familiar

JavaScript syntax like state.user.name = 'John', making state updates feel natural and reducing
boilerplate code while still maintaining React's reactivity principles.

 Minimal Boilerplate and Learning Curve
 Valtio requires very little setup code and uses intuitive APIs that feel like working with plain

JavaScript objects, making it easier for developers to adopt compared to more complex state
management solutions that require actions, reducers, or special update functions.

 Automatic Optimization
 The library automatically optimizes re-renders by tracking which properties each component

accesses, so components only update when their specific data dependencies change, leading
to better performance without manual optimization efforts like memoization or selector
functions.

 TypeScript Integration
 Valtio provides excellent TypeScript support with full type inference for state objects and

mutations, ensuring type safety across your application while maintaining the simple mutable
API that makes the library appealing.

 Flexible State Architecture
 You can organize state into multiple proxy objects for different domains of your application,

share state across components easily, and even subscribe to state changes outside of React
components for integration with other libraries or side effects.

https://valtio.dev/

Adding client-
side
interactions
and state

https://github.com/mauricedb/next-15-bootcamp/commit/2d87c57a1ce87638f6b980d7175880817b6a3a8a

Adding client-
side
interactions
and state

https://github.com/mauricedb/next-15-bootcamp/commit/2d87c57a1ce87638f6b980d7175880817b6a3a8a

Adding client-
side
interactions
and state

https://github.com/mauricedb/next-15-bootcamp/commit/2d87c57a1ce87638f6b980d7175880817b6a3a8a

Adding client-
side
interactions
and state

© ABL - The Problem Solver 74

https://github.com/mauricedb/next-15-bootcamp/commit/2d87c57a1ce87638f6b980d7175880817b6a3a8a

Comparing movies

Comparing
movies

 We want the user of the app to be able to compare movies
 We will use Vercel V0 again to generate the page

 The generated components will use generated data

 We will need to hook it up with the Valtio store

Comparing
movies

https://github.com/mauricedb/next-15-bootcamp/blob/main/prompts/3-movie-comparison.md

Comparing
movies

 npx shadcn@latest add "https://v0.dev/chat/b/b_jwu1vRBKFBo"

https://v0.dev/chat/movie-comparison-page-EkelWPRtlt7

Comparing
movies

https://github.com/mauricedb/next-15-bootcamp/commit/1a411a620432690ff3968ca261cf257cce8acb5d

Comparing
movies

https://github.com/mauricedb/next-15-bootcamp/commit/1a411a620432690ff3968ca261cf257cce8acb5d

Comparing
movies

© ABL - The Problem Solver 81

https://github.com/mauricedb/next-15-bootcamp/commit/1a411a620432690ff3968ca261cf257cce8acb5d

Disabling the
/compare route

Disabling the
/compare
route

 Prevent Empty State Confusion
 Disabling the compare route when no movies are selected prevents

users from landing on a blank or confusing page that doesn't provide
any value, eliminating the need to handle empty state UI and
reducing user frustration with dead-end navigation.

Disabling the
/compare
route

https://github.com/mauricedb/next-15-bootcamp/commit/ab8576fe03f794cea2c2ba88a2a698b01656fa86

Disabling the
/compare
route

© ABL - The Problem Solver 85

https://github.com/mauricedb/next-15-bootcamp/commit/ab8576fe03f794cea2c2ba88a2a698b01656fa86

Deploying the database
to the cloud

Deploying the
database to
the cloud

 Self-managed on Cloud VMs (DigitalOcean, Linode)
 Provides maximum control and potentially lower costs for high-usage

scenarios, but requires significant database administration expertise for
maintenance, security, and optimization tasks.

 Managed Cloud Services (AWS, Google, Azure)
 Major cloud providers offer fully managed PostgreSQL with automated

backups, patching, and scaling, but require more configuration and
typically have higher costs with traditional instance-based pricing
models.

 Neon
 Provides serverless PostgreSQL with automatic scaling, database

branching for development workflows, and a generous free tier, making
it ideal for modern applications that need flexible compute resources
without infrastructure management.

 Supabase
 Combines PostgreSQL with a full backend-as-a-service platform

including real-time subscriptions, authentication, and auto-generated
APIs, perfect for developers who want a complete backend solution
beyond just the database.

 And many more
 Heroku, Aiven, Exoscale, etc …

Using Neon

 Serverless Architecture
 Neon provides a serverless PostgreSQL platform that automatically

scales compute resources up and down based on demand, eliminating
the need to manage server infrastructure or worry about capacity
planning.

 Instant Database Creation
 You can create a new PostgreSQL database in seconds through Neon's

web console or CLI, with no complex setup or configuration required -
just sign up and start building immediately.

 Branching for Development
 Neon offers Git-like database branching that allows you to create

isolated database copies for development, testing, and staging
environments without duplicating data storage costs.

 Generous Free Tier
 Neon provides a substantial free tier with 512 MB of storage and 1

compute unit, making it excellent for development projects, prototypes,
and small applications without upfront costs.

 Standard PostgreSQL Compatibility
 Since Neon runs genuine PostgreSQL, you can use all your existing

tools, extensions, and SQL knowledge without any vendor lock-in or
proprietary syntax to learn.

Why Neon
instead of AWS

 Serverless vs. Always-On Instances
 Neon automatically scales compute to zero when inactive and scales

up on demand, while AWS RDS requires you to provision and pay for
fixed database instances that run continuously, even during periods
of no activity.

 Simplified Management and Setup
 Neon handles all database administration tasks through a

streamlined interface, whereas AWS RDS requires configuring VPCs,
security groups, parameter groups, and other infrastructure
components that add complexity to deployment and maintenance.

 Developer-Focused Features
 Neon provides Git-like database branching for development

workflows and instant database creation, while AWS RDS focuses on
enterprise features like Multi-AZ deployments and read replicas that
may be overkill for many applications.

Deploying the
database to
the cloud

https://neon.com/

Deploying the
database to
the cloud

https://neon.com/

Deploying the
database to
the cloud

https://neon.com/

Deploying the
database to
the cloud

© ABL - The Problem Solver 93

https://neon.com/

Deploying the
application to Vercel

Deploying the
application

 Next.js applications can be self hosted and deployed anywhere
 Provided you have a Node.js runtime

 Just do npm run build && npm start

 Self hosting works well in a Docker container
 Great portability and platform agnostic

 Runs anywhere Docker is supported

 Avoids vendor lock-in

 Many providers make this even easier and better using adapters
 AWS Amplify

 Cloudflare

 Deno Deploy

 Netlify

 Vercel

Deploying the
application

https://vercel.com/

Deploying the
application to
Vercel

 Vercel is the company behind Next.js
 A significant part of the React core team work there

 They use usage-based pricing
 With a with free tier

 A lot of build in tooling and services
 CDN for scaling

 Continuous deployment based on updates to GitHub’s main branch

 Automatic preview deployments with GitHub PR’s

Deploying the
application to
Vercel

https://vercel.com/

Deploying the
application to
Vercel

https://vercel.com/

Deploying the
application to
Vercel

https://vercel.com/

Deploying the
application to
Vercel

https://vercel.com/

Deploying the
application

© ABL - The Problem Solver 102

https://next-15-bootcamp.vercel.app/

Persisting selected
movies

Persisting
selected
movies

 Automatic State Synchronization
 Valtio's subscribe() function reacts to any state change in your proxy object,

automatically triggering localStorage saves whenever selected movies are added or
removed without requiring manual persistence calls throughout your application code.

 Simple JSON Serialization Pattern
 You can initialize your state from localStorage with

JSON.parse(localStorage.getItem('selectedMovies')) and then use subscribe() to
automatically save the entire state object with JSON.stringify(state) whenever it
changes, creating a seamless two-way sync.

 Minimal Setup Code
 The entire persistence setup takes just a few lines of code - create your proxy state with

initial localStorage data, then add one subscribe() call that handles all future saves
automatically, eliminating complex persistence logic scattered throughout your
components.

 Real-time Persistence
 Since subscribe() triggers on every state mutation, your selected movies are

immediately saved to localStorage as soon as users select or deselect them, ensuring no
data loss even if the browser crashes or the user accidentally closes the tab.

 Zero Component Coupling
 The persistence logic lives entirely outside your React components, so you can add,

remove, or modify selected movies from any component without worrying about
remembering to save the state - the subscribe() function handles it automatically in the
background.

Persisting
selected
movies

© ABL - The Problem Solver 105

https://github.com/mauricedb/next-15-bootcamp/commit/7dec25133bd8c7817f500e4cadeb4722fcb31ef0

Conclusion

 Next.js is a great React application framework

 Creating a new Next.js application is easy

 Using Vercel V0 can speed development a lot

 Docker is great for development purposes
 Not just for deployment to production

 The Prisma ORM makes database access really easy

 React sever component makes using server data much easier

 React client components make client-side state easier

 Vercel is a great hosting platform
 But not a requirement

© ABL - The Problem Solver 106

Thank you for joining

© ABL - The Problem Solver 107

Share your thoughts

https://x.com/intent/post?text=Next.js+15+Development+Bootcamp+by+%40mauricedb

	Slide 1
	Slide 2: Next.js 15 Development Bootcamp
	Slide 3
	Slide 4: Topics
	Slide 5: Type it out by hand?
	Slide 6: Prerequisites
	Slide 7: Install Node.js & NPM
	Slide 8: VS Code
	Slide 9: Or Cursor
	Slide 10: Following Along
	Slide 11: The changes
	Slide 12: The application
	Slide 13: Why use Next.js 15
	Slide 14: Why use Next.js
	Slide 15: Why use Next.js
	Slide 16: Why use Next.js
	Slide 17: Why use Next.js
	Slide 18: Creating a new Next.js application
	Slide 19: Creating a new Next.js application
	Slide 20: Creating a new Next.js application
	Slide 21: Creating a new Shadcn/Next.js application
	Slide 22: Creating a new Next.js application
	Slide 23: Creating a new Next.js application
	Slide 24: Generating a landing page using Vercel V0
	Slide 25: Generating a landing page using Vercel V0
	Slide 26: The Prompt
	Slide 27: Generating a landing page using Vercel V0
	Slide 28: Generating a landing page using Vercel V0
	Slide 29: Add to codebase
	Slide 30: Placeholder image
	Slide 31: Generating a landing page using Vercel V0
	Slide 32: Using shared layouts
	Slide 33: Using shared layouts
	Slide 34: Using shared layouts
	Slide 35: Using shared layouts
	Slide 36: Rendering movie cards
	Slide 37: Rendering movie cards
	Slide 38: Rendering movie cards
	Slide 39: Rendering movie cards
	Slide 40: Rendering movie cards
	Slide 41: Rendering movie cards
	Slide 42: Adding a Postgres SQL database using Docker
	Slide 43: Why use Docker?
	Slide 44: Adding a Postgres SQL database
	Slide 45: Adding a Postgres SQL database
	Slide 46: Adding the Prisma ORM
	Slide 47: Adding the Prisma ORM
	Slide 48: Adding the Prisma ORM
	Slide 49: Adding the Prisma ORM
	Slide 50: Adding the Prisma ORM
	Slide 51: Adding the Prisma ORM
	Slide 52: Adding the Prisma ORM
	Slide 53: Adding the Prisma ORM
	Slide 54: Adding the Prisma ORM
	Slide 55: Adding the Prisma ORM (Next.js)
	Slide 56: Adding the database schema
	Slide 57: Adding the database schema
	Slide 58: Adding the database schema
	Slide 59: Adding the database schema
	Slide 60: Seeding the database
	Slide 61: Seeding the database
	Slide 62: Seeding the database
	Slide 63: Seeding the database
	Slide 64: Seeding the database
	Slide 65: Using data from the DB
	Slide 66: Using data from the DB
	Slide 67: Server vs Client Components
	Slide 68: Using data from the DB
	Slide 69: Adding client-side interactions and state
	Slide 70: Adding client-side interactions and state
	Slide 71: Adding client-side interactions and state
	Slide 72: Adding client-side interactions and state
	Slide 73: Adding client-side interactions and state
	Slide 74: Adding client-side interactions and state
	Slide 75: Comparing movies
	Slide 76: Comparing movies
	Slide 77: Comparing movies
	Slide 78: Comparing movies
	Slide 79: Comparing movies
	Slide 80: Comparing movies
	Slide 81: Comparing movies
	Slide 82: Disabling the /compare route
	Slide 83: Disabling the /compare route
	Slide 84: Disabling the /compare route
	Slide 85: Disabling the /compare route
	Slide 86: Deploying the database to the cloud
	Slide 87: Deploying the database to the cloud
	Slide 88: Using Neon
	Slide 89: Why Neon instead of AWS
	Slide 90: Deploying the database to the cloud
	Slide 91: Deploying the database to the cloud
	Slide 92: Deploying the database to the cloud
	Slide 93: Deploying the database to the cloud
	Slide 94: Deploying the application to Vercel
	Slide 95: Deploying the application
	Slide 96: Deploying the application
	Slide 97: Deploying the application to Vercel
	Slide 98: Deploying the application to Vercel
	Slide 99: Deploying the application to Vercel
	Slide 100: Deploying the application to Vercel
	Slide 101: Deploying the application to Vercel
	Slide 102: Deploying the application
	Slide 103: Persisting selected movies
	Slide 104: Persisting selected movies
	Slide 105: Persisting selected movies
	Slide 106: Conclusion
	Slide 107: Thank you for joining

