About Speakers Workshops Location Tickets Sponsors . FAQ G dJ b4 o

We will be
diving deep

REACT ADVANCE]
LONDON ctober

25 & 28, 2024

e ik R R

REACTIVE days speakers luckies devs

WEB B JaVASCRIFT EXRERTS

In-person & Remote presenting on in London globally

. Attend remotely —
advanced topics remotely




Mastering React Server
Components and Server
Actions In React 19

Maurice de Beijer
@mauricedb



* Maurice de Beijer
* The Problem Solver
* Freelance developer/instructor

* Currently at https://someday.com/

« Twitter: @mauricedb

* Web: https://www.theproblemsolver.dev/

* E-mail: maurice.de.beijer@gmail.com

© ABL - The Problem Solver


https://someday.com/
https://twitter.com/MauriceDB
https://www.theproblemsolver.dev/
mailto:maurice.de.beijer@gmail.com

- What are React Server Components and why would you care?

* Using Next.js and the App Router

* Turning a React Client Component into a React Server Component
- Updates and caching with React Server Components

* Querying the database from a React Server Component

* Suspense & React Server Components

* React Server Components and streaming

- Which components are really React Server Components?

* Using React Server Actions

© ABL - The Problem Solver



_ “Typing it drills it into your brain much better than
Type it out simply copying and pasting it. You're forming new
by hand? neuron pathways. Those pathways are going to
help you in the future. Help them out now!”

© ABL - The Problem Solver



Prerequisites

Install Node & NPM
Install the GitHub repository

© ABL - The Problem Solver



Install

Node.js & NPM

-

v @ Nodejs —RunJavaScript Ever. X+

<« » C M@ 2% nodejs.org/en/

nedeo

Run JavaScript
Everywhere

Node.js® is a free, open-source, cross-
platform JavaScript runtime
environment that lets developers
create servers, web apps, command
line tools and scripts.

Download Node.js (LTS) &

Downloads Node.js v20.18.0" with long-term
support. Node.js can also be installed via package
managers.

© ABL - The Problem Solver

*

= o X & Git - Downloads x +

B E O =5 o H < C Y @& git-scm.com/downloads

Q Search entire site

Write Tests Read ar l Downloads

‘ mac0S ...' Windows
)\ Linux/Unix

Older releases are available and the Git source
repository is on GitHub.

GUI Clients

Git comes with built-in GUI tools (git-gui, gitk),
but there are several third-party tools for users
looking for a platform-specific experience.

@ Copy to clipboard View GUI Clients —

& Windows PowerShell

emos> node

.windows.1

& o&» 0@ :

= 0 glt --distributed-even-if-your-workflow-isnt

I
Latest source Release
2.38.0

Release Notes (2022-10-02)

Download for Windows

Logos

Various Git logos in PNG (bitmap) and EPS
(vector) formats are available for use in online
and print projects.

View Logos —


https://git-scm.com/downloads
https://nodejs.org/en/

DG ault async function ScienceFictionMovies() {
const movies W prisma.genre
.findUniqueOrThrow({ where: { id: }
.movies
select: {
id:
b
orderBy: {
title: 'asc’',

rn
<div className="p-4">
<hl className="my-8 text-center text-4x1 font-bold">
Science Fiction Movies

</h1>

Following

<GridLayout>
movies.map((movie) =
<MovieCard key={movie.id} movieId={movie.id} />
)
</GridLayout>

a\[e]gle

* Repo: https://github.com/mauricedb/react-server-components-24

- Slides: https://www.theproblemsolver.dev/docs/react-advanced-
2024.pdf

© ABL - The Problem Solver


https://github.com/mauricedb/react-server-components-24
https://www.theproblemsolver.dev/docs/react-advanced-2024.pdf
https://www.theproblemsolver.dev/docs/react-advanced-2024.pdf
https://bit.ly/487wSyx
https://github.com/mauricedb/react-server-components-24/commit/b071c99d95ee4f05e3fcdd5130513df3beea1b40

Create a new
Next.|s app
with shadcn/ui

* npx shadcn@latest init --src-dir

& windows PowerShell

PS C:\Repos> npx shadcn@latest init
The path C:\Repos does not contain a package.json file. Would you like to start a new Next.js project? yes
What is your project named? react-server—components-2U4
Creating a new Next.js project.

Which style would you like to use? » Default

Which color would you like to use as the base color? » Neutral
Would you like to use CSS variables for theming? no
Writing components.json.

Checking registry.

Updating

Updating

Installing dependencies.

Created 1 file:

- src\lib\utils.ts

Updating
Project initialization completed.
You may now add components.

PS C:\Repos> |

© ABL - The Problem Solver



v ) Commits - mauriced/react-se X ar - (m]

&« > &) ] 2% github.com/mauricedb/react-server-components-24/commits/main/ = . E D .
Commits
¥ main - Ay All users - B Alltime ~

-0-  Commits on Oct 11, 2024

Error handling & retrying ssraes (0 <>
G
@ mauricedb committed last week

The useOptimistic() hook cososs (@ <>
e
@ mauricedb committed last week

Manually calling a server action
ffelcba [0 <>
. mauricedb committed last week

The useActionState() hook

@ mauricedb committed last week

The useFormStatus() hook aesea (0 <>
. mauricedb committed last week &

Cleaning up the code

aceatre [ <>

cs7ea7e (O <>
@ mauricedb committed last wesk

Form actions
g8a036f (O <
. mauricedb committed last week

Guarding client components against server code
fazdscs (0 <>
@ mauricedb committed last week

What does 'use client’ really do
: sposize (O <
-~ @ mauncedb committed last week

Client components
F- P 2b9a7e (0 <
@ mauricedb committed last week

Suspense & RSC pages saagb2c (D <

@ mauncedb committed last week

Async server child components
pe7icos (B <
@ mauricedb committed last week

—
Fetching data in a RSC
MAKE IT sn - o

memegener

© ABL - The Problem Solver


https://github.com/mauricedb/react-server-components-24/commits/main/

2 windows PowerShell X +

‘ | O n e t h e PS C:\demos> git clone https://github.com/mauricedb/react-server—components-24.git
Cloning into 'react-server-components-24'...

remote: Enumeratinc

G it H U b remote: inting

remote: Compressir ] A
remote: Total 232 (delt: used 232 (del [ used 8 (from B8)

Repository Recesving objects: 3

i~

deltas:

© ABL - The Problem Solver


https://github.com/mauricedb/react-server-components-24

Install NPM

Packages

- = Use: npm install —force =

2 wWindows PowerShell * +

PS C:\demos> cd .\react-server—-components—2u\

PS C:\demos\react—server-components-24> npm install

npm Recommended protections disabled.
npm overriding peer dependency

npm While resolving: next@l5.8.8-rc.@

npm Found: react@l9.@.e-rc—b%9a98fals-202Up61U

npm
npm react@""19.0.0-rc-2d16326d-20246930" from the root project

npm 28 more (@radix-ui/react-arrow, @radix-ui/react-collection,
npm

npm Could not resolve dependency:

npm react@"19.0.0-rc—99U4737d1U-202U8522" from next@l5.0.0-rc.®
npm

npm next@"*15.0.0-canary.183" from the root project

© ABL - The Problem Solver

12



Install NPM
Packages

npm
npm
npm
npm
npm

2 windows PowerShell

version—support for other options.

> react-server-components-2U@0.1.0 postinstall
> prisma migrate dev ——name init

Already in sync, no schema change or pending migration was found.

Generated Prisma Client (v5.20.08) in 61lms

Run the following to update
npm i —save-dev prisma@latest
npm i @prisma/client@latest

added U35 packages, and audited U36 packages in 20s

14l packages are looking for funding
run ‘npm fund' for details
found @ vulnerabilities
PS C:\demos\react-server-components—2u=

x + o~ o X
@humanwhocodes/config-array@®.13.0: Use @eslint/config-array instead

rimraf@3.0.2: Rimraf versions prior to vi are no longer supported

glob@7.2.3: Glob versions prior to v9 are no longer supported
@humanwhocodes/object-schema@2.0.3: Use @eslint/object-schema instead

eslint@8.57.1: This version is no longer supported. Please see https://eslint.org/

© ABL - The Problem Solver



Start branch

- Start with the 00-start branch
- git checkout --track origin/00-start

© ABL - The Problem Solver

14



Start the

application

B npm config get registry X +
PS C:\demos\react-server-components-2U> npm run dev

ct—server-components-2U@0.1.0 dev
t dev

- Local: http://localhost: 3600
— Environments: .enwv

Starting...
Ready in 2.7s
O Compiling /
Compiled / in 3.6s (659 modules)
GET / in 3767ms
GET / in 1U6ms
Compiled in 308ms (311 modules)
O Compiling /science—fiction
Compiled /science—fiction in 561ms (730 modules)
GET /science—fiction in 936ms
GET /science—fiction in 2U6ms
Compiled /favicon.ico in 185ms (U66 modules)
GET /favicon.ico in 287ms

© ABL - The Problem Solver

15



The

application

-

,'.‘m

M

MAKE IT SO

memegenerator.net

© ABL - The Problem Solver

v @ TMDB Movies

L3 » C M @ Ilocalhost:3000/science-fiction

+

ﬁ TMDB Home Science Fiction Error Handling Client or Server

Science Fiction Movies

Dune:PartTwo @
(5080
votes)

Follow the mythic journey
of Paul Atreides as he
unites with Chani and the
Fremen while on a path of
revenge against the
conspirators who...

Details

The Thing %5
(6788
votes)

e
R K

In the winter of 1982, a
twelve-man research team
at a remote Antarctic
research station discovers
an alien buried in the snow
for over 100,000 years....

Details

© 2024 - The Problem Solver - The Movie Database

* @ E O

'_—‘;’

16


http://localhost:3000/science-fiction

What are React Server
Components?

eeeeeeeeeeeeeeeeeeeee



* React Server Components (RSC) only execute on the server
- Traditionally React components always execute in the browser

- RSCare not the same as Server Side Rendering
 With SSR components are executed both on the client and server

React Server

COm pOnentS - Applications are a combination of server and client components

* The result: The back and front-end code are more integrated
- Leading to better type safety ©

© ABL - The Problem Solver 18



Before RSC

(no SSR)

o e e e e e - -

KQW

Appluco{tuon j

( A/o‘v?gad:ion] Eov.e_s Lus‘j @ov.e_ De‘tmls]
Movie Comd} [MoV;e_ Ed“torj

Rate Movie

— e — — — — — — — — — — — — — — — — — — — — — — — — ——
e e e e e e e e e s e G G G e S e - - - e e — e - — - o —

QA A

LN
_Q\,’U\
|
@,‘l%
c‘\"\g
\
A >

_—e— = — e —— _—en e e e e = e - = = — = -—

© ABL - The Problem Solver

19



Server Side

Rendering

R BN

© ABL - The Problem Solver

20



With RSC

o e e e e e - -

pluca‘tuon j

N

Movies List

(—\féw

[ N av?gation ]

L*)

E\ovie_ Details]

|

[Movie_ Edi‘torj

—
& - 777
-

\
" Server ,
Rate Movie Risricr i

Movie Card

AN\

— e — — — — — — — — — — — — — — — — — — — — — — — — ——
e e e e e e e e e s e G G G e S e - - - e e — e - — - o —

QA A

_—— e e e e e e e e e e e e e e e e e e e — — — —— — —————————— — — — —————— — — —

© ABL - The Problem Solver 21



React Server

Components

* Server components can be asynchronous
- Great to load data from some API

» Server components render just once
* No re-rendering with state changes or event handling

* The server component code is not send to the browser
- Can safely use secure API key’s etc.

* Smaller bundle sizes

© ABL - The Problem Solver

22



X

page.tsx

import { GridLayout } from '@/components/grid-layout’
import { MovieCard } from '@/components/movie-card’
import { prisma } from '@/lib/prisma’

export default async function AllMoviesPage() {
const movies = await prisma.movie.findMany
orderBy: {
title: 'asc’,

o~ P W

b

React Server

return

Com Onent 13 <div className="p-4">
p 14 <hl className="my-8 text-center text-4xl font-bold">
15 Science Fiction Movies

</h1>

<GridLayout>

19 movies.map((movie) =

20 <MovieCard key={movie.id} movieId-{movie.id}! />
21 )

22 </GridLayout>

</div>

© ABL - The Problem Solver



React Client

Components

- Server components can render both server and client components
* Client components can only render other client components

- Adding 'use client’ to the top of a component makes it a client

component
« Used as a directive for the bundler to include this in the client JS bundle

- A client component is still executed on the server as part of SSR
* When using Next.js

movie-form.tsx X

'use client’

{ zodResolver } 'Dhookform/resolvers/zod"
Z ‘zod"'

© ABL - The Problem Solver

24



Next.js and the
App Router

eeeeeeeeeeeeeeeeeeeee



Next.js and
the App

Router

* React is no longer just a client side library
* We need additional server side capabilities

- As well as additional code bundling options

* Next.js is the best production option available
+ w Remix doesn’t support RSC yet =

* There are also more experimental options
-+ Waku from Daishi Kato

* React Server Components Demo from the React team

© ABL - The Problem Solver

26


https://waku.gg/
https://github.com/reactjs/server-components-demo

Rendering RSC's

- React Server Components are only rendered on the server
* And shipped to the client as a JSON like structure

* The React Server Component Payload

* The client then injects these JSON objects into the React tree
* Where it would previously have rendered these components themself

- = React already used a 2 step process
+ Components render to a virtual DOM
- Just a series of JavaScript objects
- Reconciliation maps the virtual DOM to the browser DOM
* Oran HTML stream in the case or Server Side Rendering

© ABL - The Problem Solver

27



Async transport

* RSC's are streamed asynchronously to the client
* Enables using Suspense boundaries while loading

© ABL - The Problem Solver

28



Code bundling

* Multiple JavaScript bundles have to be made
* The client and server have different code bundles

- Server Component code is never executed on the client
- Can use react-server-dom-webpack or a similar package

© ABL - The Problem Solver

29



Fetching dataina RSC

eeeeeeeeeeeeeeeeeeeee



Fetching data

ina RSC

* React Server Components an execute normal Node.js code
« Read/write files on disk

- Do fetch requests to other servers
* Execute CRUD in a database

* RSC’'s can be asynchronous where needed
- Just await whatever action needs to be done

© ABL - The Problem Solver

31



page.tsx M X

1 import { GridLayout } from '@/components/grid-layout’
2 import { MovieCard } from '@/components/movie-card'
3| import { prisma } from '®/lib/prisma’
A
SrC\app\ 5 export default async function ScienceFictionMovies() {
. . . 6 const movies = await prisma.genre
SClence-ﬂCtlon\ 7 .findUniqueOrThrow({ where: { id: }
8 .movies
PR S
pc 9 orderBy: {
*m 10 title: 'asc',
11 |
12
A _ Rk
s ‘Q - 14 return
e M 15 <div className="p-4">

M’iu(i ITSO

memegenerator.net

© ABL - The Problem Solver


https://github.com/mauricedb/react-server-components-24/commit/4acba7ca0ea1c21e992e8220a86901697ad88c8c

Async server
child components

eeeeeeeeeeeeeeeeeeeee



Child RSC

components

- A RSC component can render other RSC child components
* They can execute the same server based code

* Including async/await where needed

© ABL - The Problem Solver

34



pagetsx M X movie-card.tsx

export default async function ScienceFictionMovies() {
const movies = await prisma.genre

O 0 ~dJ O N

.findUniqueOrThrow({ where: { id: }
.movies
select: {
10 id: ’
11 b,
12 orderBy: {
13 title: 'asc’',

src\app\science- ,

fiction\page.tsx

return

18 <div className="p-4">
19 <hl className="my-8 text-center text-4x1l font-bold">
20 Science Fiction Movies

</h1>

<GridLayout>

24 movies.map((movie) =
25 <MovieCard key={movie.id} movieId-{movie.id}! />
26 )

</GridLayout>

© ABL - The Problem Solver


https://github.com/mauricedb/react-server-components-24/commit/b071c99d95ee4f05e3fcdd5130513df3beea1b40

X

page.tsx movie-card.tsx

18| import { prisma } from '@/1lib/prisma’
19

20 type = |
21 movieIld: number
Src\components 22 } & React. <typeof Card>
23
\mOVIE Card tSX 24 export async function MovieCard({ movieId, ...props }: ) {
u . 25
26 const movie = await prisma.movie.findUniqueOrThrow
. — 27 where: { id: movield },
ol ot P X 29
- 3 : e o 30 return
A - " <Card className="flex h-full flex-col shadow-1g" 1 ... props;>
‘ :

- Mo

MAKE IT SO

memegenerator.net

© ABL - The Problem Solver


https://github.com/mauricedb/react-server-components-24/commit/b071c99d95ee4f05e3fcdd5130513df3beea1b40

Suspense & RSC pages

eeeeeeeeeeeeeeeeeeeee



Suspense &

RSC pages

* React Server Components are suspended until they resolve
* Can be controlled with <Suspense /> boundaries

* Next.js makes it easy to suspend when rendering an async page
- Add a loading.tsx next to the page.tsx

* They can be nested and the closest loading component will be used

© ABL - The Problem Solver

38



page.tsx M X movie-card.tsx

6 export default async function ScienceFictionMovies() {

18 return
19 <div className="p-4">
20 <hl className="my-8 text-center text-4xl font-bold">
SrC\app\ 21 Science Fiction Movies
. . . Y. </h1>
science-fiction\ 23
24 <GridLayout>
pagEtSX 25 <Suspense fallback={<div>Loading ... </div>}>
26 movies.map((movie) =
27 <MovieCard key={movie.id} movieId={movie.id} />
28 )
29 </Suspense>
30 </GridLayout>
31 </div>

© ABL - The Problem Solver


https://github.com/mauricedb/react-server-components-24/commit/5949b2cac21c077ef4ba0709e4ff7e0b5d796900

movie-card.tsx

page.tsx

3 export default function Loading() {

& return

5 <div className="p-4">

6 <hl className="my-8 text-center text-4x1 font-bold">
7 Science Fiction Movies

8

</h1>

src\app\

science-fiction
11 Array.from({ length: ).map((_, index) =
12 <div
|O"‘ P - T 13 key={index
' 14 className="h-96 animate-pulse rounded-1g Mbg-gray-200 [ldark:bg-gray-700"
" 15 />
prox
A 16 )
: 4 . 17 </GridLayout>
l?_“,,. ‘f' - . 18 </dj.\f>
- . . - -
b . g .
:

- Mo

MAKE IT SO

memegenerator.net

© ABL - The Problem Solver


https://github.com/mauricedb/react-server-components-24/commit/5949b2cac21c077ef4ba0709e4ff7e0b5d796900

RSC and streaming

eeeeeeeeeeeeeeeeeeeee



RSC and

streaming

- Async React Server Components are streamed to the browser
* Using the React Server Component Payload

* On the client they are suspended until the component resolves

- Server action responses can also stream components back
- After a revalidatePath() or a revalidateTag()

© ABL - The Problem Solver

42



MName

science-fiction?_rsc=1wtp7

science-fiction ok

© ABL - The Problem Solver

"meta”,

mance

Memo

omponents wt-router.js", ["app-page
 components/render-from-template

(s
-4x1 font-bold","ch

-fiction™,{"
arset”: "ut

43



Client components

eeeeeeeeeeeeeeeeeeeee



Client

components

- Client components are required in a number of scenarios
* With interactive Ul elements like elements with a click handler

* When using browser API’s like localStorage
- When using React hooks like useState(), useEffect() etc.

- Add the "use client’ directive
- Makes a component a client component

* Client components render in the browser
- Can't be asynchronous (for now)

- Can't access files or databases on the local machine
* Other than using browser API's

* With Server Side Rendering they can also execute on the server
* Next.js uses SSR by default

© ABL - The Problem Solver

45



Client Component

o]
Server Component

- React Server Components normally perform better
* Only render once on the server

* The code doesn’t need to be shipped to the browser

- Can be async and await data to be fetched
* No need for a render/effect/re-render cycle in the browser

- Components that don’t need client capabilities should be SRC's
- State, effects, browser API’s etc. are client requirements

© ABL - The Problem Solver

46



src\components)
favourite-heart.tsx

-Q-m
- .;_ ‘Q

:
- M

MAKE IT SO

memegenerator.net

favourite-heart.tsx X

'use client’

import { Heart } from 'lucide-react'’

import { cn } from '@/lib/utils’

N oW N

> type = {
}

export function FavouriteHeart({ favourite, movieId }: ) {

13 return

14 <Heart

15 aria-label=1{favourite ? 'Remove from favourites' : 'Add to favourites'

16 className={cn('cursor-pointer Etext-green-500',

17 "Efill-green-500': favourite,

18 )

19 onClick={() = {

20 console.log ${movieId}
-

21 }

22 />

23

© ABL - The Problem Solver


https://github.com/mauricedb/react-server-components-24/commit/2b9a79e364983a8e43068a821a03823bf652e17e

What does 'use client’
really do

eeeeeeeeeeeeeeeeeeeee



What s a

server
component?

What is a server component and what is not?
* Client components are marked with 'use client'

But not all other components are server components
 With a component without 'use client’ it depends on their parents

If a component is a client component
 Then all components it renders are also client components

== There is no 'use server' for server components =
* The 'use server’ directive exists but is used for Server Actions

* But there is a server-only NPM package

© ABL - The Problem Solver

49



server-only

* Import the server-only NPM package
 With components that must run on the server

© ABL - The Problem Solver

Build Error

Failed to compile

MNextjs (14.2.14) out of date (learn more)

This error occurred during the build process and can only be dismissed by fixing the error.

5o



GrandChild is
both a client

and server
component

i@ TMDB Home Science Fiction Error Handling Client or Server

Client or Server Rendering Example

Parent Component

Rendered on: Server

GrandChild Component
Rendered on: Server

© ABL - The Problem Solver

51



Using an RSC
as a child of a

client
component

- A client component can have a server component as a child
* Aslong as it doesn’t render it

- Render the child server component from another server component
¢ And pass it as a children prop into the client component

© ABL - The Problem Solver

52



X

child.tsx parent.tsx

1| 'use client"
2
3 import { PropsWithChildren } from 'react’
%
5 dimport { cn } from '@/lib/utils’
6 import { GrandChild } from './grand-child’
;
SrC\ComponentS\ 8 export function Child({ children }: ) {
. 9 return
server-or-client\ 10 <div
11 className= = ${cn(
Chlld tSX 12 "B bg-green-200': typeof window == 'undefined',
. 13 )}
14 >
15 <h3 className="text-x1 font-bold">Child Component</h3>
16 <p>Rendered on: {typeof window == ‘'undefined' ? 'Server' : 'Client'!</p>
17 <GrandChild />
18 children

</div>

The Problem Solver


https://github.com/mauricedb/react-server-components-24/commit/bb95139977799708001c72b4f7fc6384526c1aac

child.tsx X

parent.tsx

1 import { cn } from '@/lib/utils’
2 import { Child } from './child®
3 import { GrandChild } from './grand-child’
%
5 export function Parent() {
6 return
src\components)\ 7 | [ <ty
. 8 className= O ${cn(
Server—or—Chent\ 9 'BMbg-red-200': typeof window == ‘'undefined',
10 )}
argn+ +e\ 11 >
p 12 <h2 className="text-2x1 font-bold">Parent Component</h2>
13 <p>Rendered on: {typeof window == ‘undefined' ? 'Server' : 'Client’}</p>
- * — 14 <Child>
3 4 : 15 <GrandChild />
k. - Y - : 16 </Child>
- . : e ’ - </div>
b . .
:

- Mo

MAKE IT SO

memegenerator.net

© ABL - The Problem Solver


https://github.com/mauricedb/react-server-components-24/commit/bb95139977799708001c72b4f7fc6384526c1aac

Break time

© ABL - The Problem Solver

55



Calling Server Actions

eeeeeeeeeeeeeeeeeeeee



Calling Server

Actions

- React Server Actions are functions that we can call on the client
* Butthen execute on the server

* Add the 'use server' annotation
- Can be at the top of a file or a single function

* Not related to server components

- Can be passed as the action of a client side <form />
 The forms data is passed as a FormData parameter

* Even works if JavaScript is disabled ©

- Can also be called as a normal asynchronous function
* The network request is handled for you

© ABL - The Problem Solver

57



Form actions

eeeeeeeeeeeeeeeeeeeee



Form actions

- A <form> element can take a ‘action’ prop
- Can point to an action function that executes on the client or server

* More flexible that using the onSubmit

- All the <input> from the form is passed as a FormData parameter
* Use hidden inputs to pass additional data

- @ The server action function works even if JavaScript is disabled

© ABL - The Problem Solver

59



X

page.tsx movie-editor.tsx

12 export default async function MovieEditPage({ params }: ) {

19 const formAction = async (formData: =
20 'use server'
21 const json = Object.fromEntries(formData.entries()
22 console.log( 'Form submit’', json
23
. 24 movie.title = formData.get('title') as string
SrC\app\mOV|e\ 25 movie.overview = formData.get('overview') as string
. . 26
[id]\edit\ 27 T
28 await prisma.movie.update({
29 where: id: movie.id },
page.tSX 30 data: movie,
31 }
32
33
34 return
35 <div className="p-4">
36 <MovieEditor movie=imovie} formAction={formAction} />;
37 </div>
38

39

© ABL - The Problem Solver


https://github.com/mauricedb/react-server-components-24/commit/88a936f0ec4ce84697df2a435a29cf3e365baea3

movie-editor.tsx X

page.tsx

22 type Props = {

23 movie: Movie
24 formAction: (formData: FormData) = void
25 }
26
27 export function MovieEditor({ movie, formAction }: Props) {
28 const errorMessage = "'
29 const form = useForm<Movie
src\components\ 30 | | defaultValues: movie,
. . 31
movie-editor.tsx 32 const = useToast
33 const posterPath = form.watch( 'posterPath’

34

*M 35 return
36 <div className="flex flex-col md:flex-row">

37 > <div className="md:w-1/3">
— : - 45 </div>
; Q’ 46 <div className="max-w-x1 md:w-2/3 md:pl-8">
: ' 47 <Form 1 ... form;>
e » 48 <form className="flex flex-col gap-4" action={formAction;>
M-—AKE IT sn 49 <input type="hidden" name="id" value={movie.id} />

memegenerator.net

© ABL - The Problem Solver


https://github.com/mauricedb/react-server-components-24/commit/88a936f0ec4ce84697df2a435a29cf3e365baea3

Guarding client
components against
server code

eeeeeeeeeeeeeeeeeeeee



server-only

- Components that render in the browser shouldn’t execute server code
* This would usually result in a runtime error

- An immediate compile time error is better
* The server-only package does this

* npm install server-only

- Add import 'server-only’ to any code that should not be imported
* Only needed in the modules that actually execute the Node code

© ABL - The Problem Solver

63



package.json

{} packagejson M X prisma.ts
{}

25 "dependencies”:

36 "next": "14.2.14",

37 "react": ""18",

38 "react-dom": ""18",

39 "react-hook-form": "“7.53.0",

40 "server-only": ""0.0.1",

41 "tailwind-merge": "“2.5.2",

Ay, "tailwindcss-animate": ""1.0.7",
43 "zod": ""3.23.8"

I
I

© ABL - The Problem Solver


https://github.com/mauricedb/react-server-components-24/commit/faed5c33320d443857c4b25f2fa0d1b272b8c130

src\lib\
prisma.ts

I= File Edit Selecion View Go Run Terminal Help = S react-server-components-24

{} packagejson prisma.ts M X

1| import 'server-only'

2

3 import { PrismaClient } from '@prisma/client’
4

5

6

7

8

9
10
11 const globalForPrisma = global as unknown as {
12 prisma: PrismaClient | undefined
13 }

export const prisma = globalForPrisma.prisma 7? new PrismaClient()

if (process.env.NODE_ENV == 'production') {
globalForPrisma.prisma = prisma

}

© ABL - The Problem Solver


https://github.com/mauricedb/react-server-components-24/commit/faed5c33320d443857c4b25f2fa0d1b272b8c130

src\app\
science-fiction\

page.tsx

prisma.ts
‘use client’

import { GridLayout } from '@/components/grid-layout'’
import { MovieCard } from '@/components/movie-card’
import { prisma } from '@/lib/prisma’

Suspense

()1

© ABL - The Problem Solver

Prevent client components from being

66


https://github.com/mauricedb/react-server-components-24/commit/faed5c33320d443857c4b25f2fa0d1b272b8c130

The error

"—‘\'r , -
| - ‘Q

M

MAKE IT SO

memegenerator.net

./src/lib/prisma.ts
Error:

You're importing a component that needs server-only. That only works in a Server Component which is not supported in the pages/ direct
ory. Read more: https://nextjs.org/docs/getting-started/

react-essentials#server-components

I
|

import ‘server-only’
import { PrismaClient } from ‘@prisma/client’

Import trace for requested module:
./src/lib/prisma.ts

© ABL - The Problem Solver

67



The useFormStatus()
hook

eeeeeeeeeeeeeeeeeeeee



useFormStatus

hook

- The useFormStatus() hook gives information about form submition
* The pending status let’s you know if a submit is active

- = Must be in a component that is rendered as child from the <form> =

© ABL - The Problem Solver

69



src\components)\
submit-button.tsx

MAKE IT SO

memegenerator.net

submit-button.tsx X

import { useFormStatus } from 'react-dom'
import { Button } from './ui/button’

export function SubmitButton({ children }: React.
const pending = useFormStatus

[ 3 I = S B N Ry Y

return
<Button type="submit" disabled={pendingf>
children
</Button>

© ABL - The Problem Solver

70


https://github.com/mauricedb/react-server-components-24/commit/d229684293f88e0ef2bb795725cbb1acf031f0a3

The useActionState()
hook

eeeeeeeeeeeeeeeeeeeee



useActionState

hook

- Updates component state based on the result of a form action
* The state round trips to the action function

« Useful for form validation etc

- = Note: useFormState for now with production React/Next.js! =
* Doesn’t expose an isPending status

© ABL - The Problem Solver

72



package.json

{} packagejson M X movie-editor.tsx actions.ts

{1

25 "dependencies”:

36 "next": ""15.0.0-canary.183",

37 "react": ""19.0.0-rc-2d16326d-20240930",

38 "react-dom": ""19.0.0-rc-2d16326d-20240930",
39 "react-hook-form": ""*7.53.0",

40 "server-only": ""0.0.1",

41 "tailwind-merge": ""2.5.2",

42 "tailwindcss-animate": ""1.0.7",

43 "zod": ""3.23.8"

_L'H-_
~

© ABL - The Problem Solver


https://github.com/mauricedb/react-server-components-24/commit/0cfa1fe6cb9db6048320d3c79066a5a23d66f986

{} package.json movie-editor.tsx X actions.ts < 63 Q €

21 import { useActionState } from 'react’
22
23 type = o
24 movie: /ie
25 formAction: (state: string, formData: FormData) = Promise<string>
26 }
27
28 export function MovieEditor({ movie, formAction }: Props) {
29 > const form = useForm
31
32 const toast = useToast()
33 const posterPath = form.watch('posterPath’
34

src\components)\
36

n L] =
movie-editor.tsx 5 o e e e
. 38 const [errorMessage, action, isPending| = useActionState

39 async (state: string, formData: FormData) =
40 const result = await formAction(state, formData)

41

42 if (result) {

43 toast

[A title: “Error’,

45 description: result,
46 variant: 'destructive’,
47

48 }

49 return result

50

51

52

© ABL - The Problem Solver


https://github.com/mauricedb/react-server-components-24/commit/0cfa1fe6cb9db6048320d3c79066a5a23d66f986

src\server\
actions.ts

-Q-m
g .t"# ~" .

MAKE IT SO

memegenerator.net

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
L
45
46
47
48
49
50
51
52
53

{} packagejson movie-editor.tsx actions.ts bl

export async function handleSubmitMovieForm(
state: string,
formData: ,

): <string> {

const idValue = formData.get('id'
const id = Number(idValue
if (!id || isNaN(id

throw new Error('Invalid id'

const movie = await getMovieOrThrow(id

const movieRecord:
formData.forEach((value, key) =

if ('movie.title
return 'The movie title is required’

await updateMovie(id, movie

redirect ${id}

- The Problem Solver

string, string | number | boolean



https://github.com/mauricedb/react-server-components-24/commit/0cfa1fe6cb9db6048320d3c79066a5a23d66f986

Manually calling a
server action

eeeeeeeeeeeeeeeeeeeee



\WETISELLY,

calling a server
action

- Server actions act as normal asynchronous functions
- Makes the boundary between server and client almost transparent

- Call like a normal async function when needed
* The network call is handled for you

* Return any result you want
* Aslong as it can be serialized to JSON

- Don’t use throw new Error(*‘Some message’)
* = Error messages are hidden in a production build =

© ABL - The Problem Solver

77



favourite-heart.tsx

6| import { toggleFavourite } from '@/server/actions’
-
8 > type = |
11 }
12
13 export function FavouriteHeart({ favourite, movield }: ) {
14 return
15 <Heart
16 aria-label=1{favourite ? 'Remove from favourites' : 'Add to favourites’
17 className={cn('cursor-pointer text-green-500',
18 "fill-green-500': favourite,
19 )
20 onClick={async () = {
21 try

*m 22 await toggleFavourite(movield
23 catch (error

24 console.error(error
25

- » -
- Q 26 }
: }: | , 27 />
- (A. 28

MAKE IT SO

memegenerator.net

src\components)
favourite-heart.tsx

© ABL - The Problem Solver


https://github.com/mauricedb/react-server-components-24/commit/ff81cba302831f38bc09d2153041e25c0c5dc6e3

The useOptimistic()
hook

eeeeeeeeeeeeeeeeeeeee



useOptimistic

hook

- Create more responsive user interfaces

- Immediately update the Ul with an optimistic state before an
asynchronous action

- Use whatever optimistic state you want
- Automatically updated when the action completes

© ABL - The Problem Solver

8o



favourite-heart.tsx M X

7 import { useOptimistic, useTransition } from 'react’

8
9 > type Props = {
12 }
13
14 export function FavouriteHeart({ favourite, movield }: Props) {
15 const [isPending, startTransition] = useTransition
16 const [optimisticFavourite, setOptimisticFavourite] = useOptimistic(favourite
17
18 return
src\components)\ e | | (et
p 20 aria-label={favourite ? 'Remove from favourites' : 'Add to favourites’
favourlte_heart tSX 21 className={cn( ' cursor-pointer Mtext-green-500',
. 22 'Efill-green-500': optimisticFavourite,
23 'opacity-50': isPending,
24 )
*M 25 onClick={() = {
26 startTransition(async =
27 try {
28 setOptimisticFavourite('!'optimisticFavourite
nd . ) ’ - 29 await toggleFavourite(movield
; a 30 } catch (error) {
: . 31 console.error(error
- M 32 }
33
34

MAKE IT SO

memegenerator.net

© ABL - The Problem Solver


https://github.com/mauricedb/react-server-components-24/commit/8fcdb668d1b5f0db3d772a725876bd7b42710ebb

Error handling & retrying

eeeeeeeeeeeeeeeeeeeee



Error handling

& retrying

- An ErrorBoundary will catch errors in React Server Components
* The normal expected React behavior

* Next.js makes it easy to catch errors
- Add a error.tsx next to the page.tsx

* They can be nested and the closest will be used

© ABL - The Problem Solver

83



src\app\
error-handling\
er"“*"'
-.rm
- .;; ‘,.

:
- 'h

MAKE IT SO

memegenerator.net

X

error.tsx

type Props = {
error: Error & { digest?: string
reset: = void

O 00

}

export default function Error({ error, reset }: Props) {
const router = useRouter

const tryAgainHandler = =

16 startTransition(() = {
17 router.refresh
18 reset

}

22 return
23 <div className="flex min-h-screen flex-col items-center justify-center gap-4">
24 <h2 className="text-2x1 font-bold">Something went wrong!</h2>
25 <code className="text-center HEtext-red-500">
26 Message: |error.message
27 <br />
- 28 Digest: {error.digest}
29 </ code>
30 <Button onClick={tryAgainHandler!>Try again</Button>
31 </div>

© ABL - The Problem Solver


https://github.com/mauricedb/react-server-components-24/commit/5836fbb67069981254dd8755e16aa058f990fdc5

Cleaning up the code

eeeeeeeeeeeeeeeeeeeee



Cleaning up the

code

* It's considered a best practice not to put server logic in the Ul
- Server actions typically go into a separate actions.ts

© ABL - The Problem Solver

86



X

page.tsx actions.ts page.tsx

import { MovieEditor } from '@/components/movie-editor’
import { handleSubmitMovieForm } from '@/server/actions’
import { getMovie } from '@/server/movie’

type = {
params: id: string
}

O 00 ~N O 1 &~ W

src\app\movie
[id]\edit\
page.tsx

export default async function MovieEditPage({ params }: ) {
12 const movie = await getMovie(parseInt(params.id

14 if ('movie
15 redirect('/404"

return
19 <div className="p-4">

20 <MovieEditor movie={movie}! formAction={handleSubmitMovieForm} />;
</div>

© ABL - The Problem Solver


https://github.com/mauricedb/react-server-components-24/commit/c57e07cbbf5c173a906a4964ce519e6741036a9c

src\server\

actions.ts

actions.ts X

'use server'

import {

import {
import {

© ABL - The Problem Solver

revalidatePath } from 'next/cache’

sleep
getMovieOrThrow, updateMovie } from './movie'
redirect } from 'next/navigation’

88


https://github.com/mauricedb/react-server-components-24/commit/c57e07cbbf5c173a906a4964ce519e6741036a9c

X

actions.ts movie-card.tsx

page.tsx page.tsx

15 import { VoteStars } from './vote-stars’
16 import { FavouriteHeart } from './favourite-heart'
17 import { getMovieOrThrow } from '@/server/movie’
18
19 type = {
src\components\ 20 | movield: number
. 8 . < >
mOVIe-CaI’dtSX i; } & React typeof Card
23 export async function MovieCard({ movield, ...props }: ) {
24
25 const movie = await getMovieOrThrow(movield
26
27 return

28

<Card className="flex h-full flex-col shadow-1lg"

... props|>

© ABL - The Problem Solver


https://github.com/mauricedb/react-server-components-24/commit/c57e07cbbf5c173a906a4964ce519e6741036a9c

page.tsx actions.ts page.tsx

1 import { GridLayout } from '@/components/grid-layout’
2 import { MovieCard } from '@/components/movie-card’
3 import { getScienceFictionMovies } from '@/server/movie’
5 Suspense react
5
6 export default async function ScienceFictionMovies() {
7 const movies = await getScienceFictionMovies
8
Src\app\ 9 | return
10 <div className="p-4">
i f' - 11 <hl className="my-8 text-center text-4x1 font-bold">
SCIence- ICtlon\ 12 Science Fiction Movies
e 13 </h1>
C 14
15 <GridLayout>
a*""" 16
£ 4 ' 17 movies.map((movie) =
".‘~r-‘; - : 18 <MovieCard key={movie.id! movieId-{movie.id} />
- . — - 19 )
; - ‘Q 20
’ ' 21 </GridLayout>
- M 22 </div>
23
MAKE IT SO ]

memegenerator.net

© ABL - The Problem Solver


https://github.com/mauricedb/react-server-components-24/commit/c57e07cbbf5c173a906a4964ce519e6741036a9c

Recommendations with
React Server Components

eeeeeeeeeeeeeeeeeeeee



Recommendations

- Start with Shared components
« Canrun on the server or client as needed

- Will default to act as Server Components

- Switch to Server only components if needed
* When you need to use server side capabilities

* Only use Client only components when absolutely needed
- Local state or side effects

* Interactivity
* Required browser API's

- Learn all about the new capabilities of Next.js
* App Router

© ABL - The Problem Solver

92



React Server Components are a great new addition to React
* Helps with keeping the client more responsive

- Makes the application architecture easier

Use Next.js and the App Router
- Because you need a server

Conclusion

React Client Components
- Are components with state and interactivity and require ‘use client’

React Server Components are streamed
 And use Suspense boundaries until they are done

Server Actions are a great way to call back into the server
* They also update the invalidated server components on the client

© ABL - The Problem Solver 93



Thank you for joining

Share your thoughts

© ABL - The Problem Solver

94


https://x.com/intent/post?text=Mastering+React+Server+Components+and+Server+Actions+in+React+19+by+%40mauricedb

	Slide 1
	Slide 2: Mastering React Server Components and Server Actions in React 19
	Slide 3
	Slide 4: Topics
	Slide 5: Type it out by hand?
	Slide 6: Prerequisites
	Slide 7: Install  Node.js & NPM
	Slide 8: Following Along
	Slide 9: Create a new Next.js app with shadcn/ui
	Slide 10: The changes
	Slide 11: Clone the GitHub Repository
	Slide 12: Install NPM Packages
	Slide 13: Install NPM Packages
	Slide 14: Start branch
	Slide 15: Start the application
	Slide 16: The application
	Slide 17: What are React Server Components?
	Slide 18: React Server Components
	Slide 19: Before RSC (no SSR)
	Slide 20: Server Side Rendering
	Slide 21: With RSC
	Slide 22: React Server Components
	Slide 23: React Server Component
	Slide 24: React Client Components
	Slide 25: Next.js and the  App Router
	Slide 26: Next.js and the App Router
	Slide 27: Rendering RSC’s
	Slide 28: Async transport
	Slide 29: Code bundling
	Slide 30: Fetching data in a RSC
	Slide 31: Fetching data in a RSC
	Slide 32: src\app\ science-fiction\ page.tsx
	Slide 33: Async server  child components
	Slide 34: Child RSC components
	Slide 35: src\app\science-fiction\page.tsx
	Slide 36: src\components\movie-card.tsx
	Slide 37: Suspense & RSC pages
	Slide 38: Suspense & RSC pages
	Slide 39: src\app\ science-fiction\ page.tsx
	Slide 40: src\app\ science-fiction\ loading.tsx
	Slide 41: RSC and streaming
	Slide 42: RSC and streaming
	Slide 43: RSC Payload
	Slide 44: Client components
	Slide 45: Client components
	Slide 46: Client Component or  Server Component
	Slide 47: src\components\ favourite-heart.tsx
	Slide 48: What does 'use client’ really do
	Slide 49: What is a server component?
	Slide 50: server-only
	Slide 51: GrandChild is both a client and server component 
	Slide 52: Using an RSC as a child of a client component
	Slide 53: src\components\server-or-client\ child.tsx
	Slide 54: src\components\server-or-client\ parent.tsx
	Slide 55: Break time
	Slide 56: Calling Server Actions
	Slide 57: Calling Server Actions
	Slide 58: Form actions
	Slide 59: Form actions
	Slide 60: src\app\movie\ [id]\edit\ page.tsx
	Slide 61: src\components\ movie-editor.tsx
	Slide 62: Guarding client components against server code
	Slide 63: server-only
	Slide 64: package.json
	Slide 65: src\lib\ prisma.ts
	Slide 66: src\app\ science-fiction\ page.tsx
	Slide 67: The error
	Slide 68: The useFormStatus() hook
	Slide 69: useFormStatus hook
	Slide 70: src\components\ submit-button.tsx
	Slide 71: The useActionState() hook
	Slide 72: useActionState hook
	Slide 73: package.json
	Slide 74: src\components\ movie-editor.tsx
	Slide 75: src\server\ actions.ts
	Slide 76: Manually calling a server action
	Slide 77: Manually calling a server action
	Slide 78: src\components\ favourite-heart.tsx
	Slide 79: The useOptimistic() hook
	Slide 80: useOptimistic hook
	Slide 81: src\components\ favourite-heart.tsx
	Slide 82: Error handling & retrying
	Slide 83: Error handling & retrying
	Slide 84: src\app\ error-handling\ error.tsx
	Slide 85: Cleaning up the code
	Slide 86: Cleaning up the code
	Slide 87: src\app\movie [id]\edit\ page.tsx
	Slide 88: src\server\ actions.ts
	Slide 89: src\components\ movie-card.tsx
	Slide 90: src\app\ science-fiction\ page.tsx
	Slide 91: Recommendations with React Server Components
	Slide 92: Recommendations
	Slide 93: Conclusion
	Slide 94: Thank you for joining

