

React Server Components
Unleashed: A Deep Dive into
Next-Gen Web Development
Maurice de Beijer
@mauricedb

 Maurice de Beijer

 The Problem Solver

 Microsoft MVP

 Freelance developer/instructor

 Currently at https://someday.com/

 Twitter: @mauricedb

 Web: http://www.TheProblemSolver.nl

 E-mail: maurice.de.beijer@gmail.com

© ABL - The Problem Solver 3

https://someday.com/
https://twitter.com/MauriceDB
http://www.theproblemsolver.nl/
mailto:maurice.de.beijer@gmail.com
http://www.theproblemsolver.nl/

Topics

 What are React Server Components and why would you care?

 Using Next.js and the App Router

 Turning a React Client Component into a React Server Component

 Updates and caching with React Server Components

 Querying the database from a React Server Component

 Suspense & React Server Components

 React Server Components and streaming

 Which components are really React Server Components?

 Using React Server Actions

© ABL - The Problem Solver 4

Bonus
Udemy
Course

© ABL - The Problem Solver 5

Code: REACT-BERLIN-2023

https://www.udemy.com/course/boost-your-
developer-potential-with-react-server-

components

https://www.udemy.com/course/boost-your-developer-potential-with-react-server-components/?couponCode=REACT-BERLIN-2023
https://www.udemy.com/course/boost-your-developer-potential-with-react-server-components/?couponCode=REACT-BERLIN-2023
https://www.udemy.com/course/boost-your-developer-potential-with-react-server-components/?couponCode=REACT-BERLIN-2023
https://www.udemy.com/course/boost-your-developer-potential-with-react-server-components/?couponCode=REACT-BERLIN-2023

Type it out
by hand?

“Typing it drills it into your brain much better than
simply copying and pasting it. You're forming new
neuron pathways. Those pathways are going to
help you in the future. Help them out now!”

© ABL - The Problem Solver 6

Prerequisites
Install Node & NPM

Install the GitHub repository

© ABL - The Problem Solver 7

Install
Node.js & NPM

© ABL - The Problem Solver 8

https://git-scm.com/downloads
https://nodejs.org/

Following
Along

 Repo: https://github.com/mauricedb/react-berlin-2023-ws

 Slides: https://bit.ly/react-berlin-2023-ws

© ABL - The Problem Solver 9

https://github.com/mauricedb/react-berlin-2023-ws
https://bit.ly/react-berlin-2023-ws
https://bit.ly/react-berlin-2023-ws

Create a new
Next.js app

© ABL - The Problem Solver 10

Adding Shadcn
support

© ABL - The Problem Solver 11

Adding Shadcn
components

© ABL - The Problem Solver 12

The changes

© ABL - The Problem Solver 13

https://github.com/mauricedb/react-berlin-2023-ws/commits/main

Clone the
GitHub
Repository

© ABL - The Problem Solver 14

https://github.com/mauricedb/react-berlin-2023-ws

Install NPM
Packages

© ABL - The Problem Solver 15

https://github.com/mauricedb/react-berlin-2023-ws

Start branch  Start with the 00-start branch
 git checkout --track origin/00-start

© ABL - The Problem Solver 16

Start the
application

© ABL - The Problem Solver 17

https://github.com/mauricedb/react-berlin-2023-ws

The
application

© ABL - The Problem Solver 18

http://localhost:3000/

What are React Server
Components?

© ABL - The Problem Solver 19

React Server
Components

 React Server Components (RSC) only execute on the server
 Traditionally React components always execute in the browser

 RSC are not the same as Server Side Rendering
 With SSR components are executed both on the client and server

 Applications are a combination of server and client components

 The result: The back and front-end code are more integrated
 Leading to better type safety☺

© ABL - The Problem Solver 20

Before RSC

© ABL - The Problem Solver 21

Server Side
Rendering

© ABL - The Problem Solver 22

With RSC

© ABL - The Problem Solver 23

React Server
Components

 Server components can be asynchronous
 Great to load data from some API

 Server components render just once
 No re-rendering with state changes or event handling

 The server component code is not send to the browser
 Can safely use secure API key’s etc.

 Smaller bundle sizes

 ☞ React Server Components require TypeScript 5.1 ☜

© ABL - The Problem Solver 24

React Server
Component

© ABL - The Problem Solver 25

https://github.com/mauricedb/react-berlin-2023-ws/blob/main/src/components/genre-loader.tsx

React Client
Components

 Server components can render both server and client components
 Client components can only render other client components

 Adding 'use client’ to the top of a component makes it a client
component

 Used as a directive for the bundler to include this in the client JS bundle

 A client component is still executed on the server as part of SSR
 When using Next.js

© ABL - The Problem Solver 26

https://github.com/mauricedb/react-berlin-2023-ws/blob/main/src/components/movie-form.tsx

Turning a React
Client Component into a
Server Component

© ABL - The Problem Solver 27

Client Component
to
Server Component

 React Server Components normally perform better
 Only render once on the server

 The code doesn’t need to be shipped to the browser

 Can be async and await data to be fetched
 No need for a render/effect/re-render cycle in the browser

 Components that don’t need client capabilities should be RSC’s
 State, effects, browser API’s etc. are client requirements

© ABL - The Problem Solver 28

movies
/page.tsx

© ABL - The Problem Solver 29

https://github.com/mauricedb/react-berlin-2023-ws/commit/caa8312a1f10c700f63f01ca01754602e2fe9143

movie-card.tsx

© ABL - The Problem Solver 30

https://github.com/mauricedb/react-berlin-2023-ws/commit/caa8312a1f10c700f63f01ca01754602e2fe9143

movies/[id]
/page.tsx

© ABL - The Problem Solver 31

https://github.com/mauricedb/react-berlin-2023-ws/commit/caa8312a1f10c700f63f01ca01754602e2fe9143

movie-form.tsx

© ABL - The Problem Solver 32

https://github.com/mauricedb/react-berlin-2023-ws/commit/caa8312a1f10c700f63f01ca01754602e2fe9143

Next.js and the
App Router

© ABL - The Problem Solver 33

Next.js and
the App
Router

 React is no longer just a client side library
 We need additional server side capabilities

 As well as additional code bundling options

 Next.js is the best production option available
 Shopify Hydrogen is also an option

 ☞ Remix 2 doesn’t support RSC yet ☜

 There are also more experimental options
 Waku from Daishi Kato

 React Server Components Demo from the React team

© ABL - The Problem Solver 34

https://waku.gg/
https://github.com/reactjs/server-components-demo

Rendering RSC’s

 React Server Components are only rendered on the server
 And shipped to the client as a JSON like structure

 The React Server Component Payload

 The client then injects these JSON objects into the React tree
 Where it would previously have rendered these components themself

 ☞ React already used a 2 step process☜
 Components render to a virtual DOM

 Just a series of JavaScript objects

 Reconciliation maps the virtual DOM to the browser DOM

 Or an HTML stream in the case or Server Side Rendering

© ABL - The Problem Solver 35

Async transport  RSC’s are streamed asynchronously to the client
 Enables using Suspense boundaries while loading

© ABL - The Problem Solver 36

Code bundling

 Multiple JavaScript bundles have to be made
 The client and server have different code bundles

 Server Component code is never executed on the client
 Can use react-server-dom-webpack or a similar package

© ABL - The Problem Solver 37

Updates and caching

© ABL - The Problem Solver 38

Updates and
caching

 Next.js does a lot of optimizations using caching
 Both on the server and client

 The Next.js uses a Data Cache and Full Router Cache on the server
 Use export const dynamic = 'force-dynamic' to make sure data on the

server isn’t cached

 Can also be controlled at the fetch() level

 The Next.js uses a Router Cache on the client
 Dynamically rendered routes are purged after 30 seconds

 Call router.refresh() to immediately purge the cache

 Make sure to use the router from 'next/navigation’

© ABL - The Problem Solver 39

https://nextjs.org/docs/app/building-your-application/caching

movies/[id]
/page.tsx

© ABL - The Problem Solver 40

https://github.com/mauricedb/react-berlin-2023-ws/commit/6588ec6ca034bb8469a65a3f92e4f07264c47134

movie-
form.tsx

© ABL - The Problem Solver 41

https://github.com/mauricedb/react-berlin-2023-ws/commit/6588ec6ca034bb8469a65a3f92e4f07264c47134

movies
/page.tsx

© ABL - The Problem Solver 42

https://github.com/mauricedb/react-berlin-2023-ws/commit/6588ec6ca034bb8469a65a3f92e4f07264c47134

Querying the database
from an RSC

© ABL - The Problem Solver 43

Querying the
database from
an RSC

 Because an RSC only runs on the server we can use server side code
 Query the DB using Prisma directly

 It’s save to use secrets like database connection strings

 Never executed in the browser
 Leads to smaller JavaScript bundle sizes

© ABL - The Problem Solver 44

movies
/page.tsx

© ABL - The Problem Solver 45

https://github.com/mauricedb/react-berlin-2023-ws/commit/389efb9a45c0a07eee6d9dbc1d1c33c5882db061

movies/[id]
/page.tsx

© ABL - The Problem Solver 46

https://github.com/mauricedb/react-berlin-2023-ws/commit/389efb9a45c0a07eee6d9dbc1d1c33c5882db061

api/movies/[id]
/route.ts

© ABL - The Problem Solver 47

https://github.com/mauricedb/react-berlin-2023-ws/commit/389efb9a45c0a07eee6d9dbc1d1c33c5882db061

Prevent over fetching

© ABL - The Problem Solver 48

Prevent over
fetching

 Colocation of DB queries with components enables more optimizations
 Fetch exactly the right amount of data

 No more shared REST queries

© ABL - The Problem Solver 49

movies
/page.tsx

© ABL - The Problem Solver 50

https://github.com/mauricedb/react-berlin-2023-ws/commit/eba13cf657a8712e41a05c8bd4a81ec516ada2e5

Break time

© ABL - The Problem Solver 51

Suspense & RSC pages

© ABL - The Problem Solver 52

Suspense &
RSC pages

 React Server Components are suspended until they resolve
 Can be controlled with <Suspense /> boundaries

 Next.js makes it easy to suspend when rendering an async page
 Add a loading.tsx

 They can be nested and the closest loading component will be used

© ABL - The Problem Solver 53

movies
/loading.tsx

© ABL - The Problem Solver 54

https://github.com/mauricedb/react-berlin-2023-ws/commit/28b2b942478db20b02561d94cfc85ec35aa65c1d

movies
/page.tsx

© ABL - The Problem Solver 55

https://github.com/mauricedb/react-berlin-2023-ws/commit/28b2b942478db20b02561d94cfc85ec35aa65c1d

movies/[id]
/page.tsx

© ABL - The Problem Solver 56

https://github.com/mauricedb/react-berlin-2023-ws/commit/28b2b942478db20b02561d94cfc85ec35aa65c1d

RSC and streaming

© ABL - The Problem Solver 57

RSC and
streaming

 Async React Server Components are streamed to the browser
 Using the React Server Component Payload

 On the client they are suspended until the component resolves

 Server action responses can also stream components back
 After a revalidatePath() or a revalidateTag()

© ABL - The Problem Solver 58

RSC Payload

© ABL - The Problem Solver 59

Site layout as an RSC

© ABL - The Problem Solver 60

Site layout as
an RSC

 A layout.tsx is typically a React Server Component
 But can be a client component if required

 Render server and/or client components as needed

© ABL - The Problem Solver 61

layout.tsx

© ABL - The Problem Solver 62

https://github.com/mauricedb/react-berlin-2023-ws/commit/666c6f05d07cf812f91da0a2bc7d5806abcd3d01

main-nav.tsx

© ABL - The Problem Solver 63

https://github.com/mauricedb/react-berlin-2023-ws/commit/666c6f05d07cf812f91da0a2bc7d5806abcd3d01

shopping-cart.tsx

© ABL - The Problem Solver 64

https://github.com/mauricedb/react-berlin-2023-ws/commit/666c6f05d07cf812f91da0a2bc7d5806abcd3d01

genre-selector.tsx

© ABL - The Problem Solver 65

https://github.com/mauricedb/react-berlin-2023-ws/commit/666c6f05d07cf812f91da0a2bc7d5806abcd3d01

What is a server
component?

© ABL - The Problem Solver 66

What is a
server
component?

 What is a server component and what is not?
 Client components are marked with 'use client'

 But not all other components are server components
 With a component without 'use client’ it depends on their parents

 If a component is a client component
 Then all components it renders are also client components

 ☞There is no 'use server' for server components ☜
 The 'use server’ directive exists but is used for Server Actions

 But there is a server-only NPM package

© ABL - The Problem Solver 67

server-only

 Import the server-only NPM package
 With components that must run on the server

© ABL - The Problem Solver 68

Using an RSC
as a child of a
client
component

 A client component can have a server component as a child
 As long as it doesn’t render it

 Render the child server component from another server component
 💡And pass it as a children prop into the client component 💡

© ABL - The Problem Solver 69

child-
component.tsx

© ABL - The Problem Solver 70

https://github.com/mauricedb/react-berlin-2023-ws/commit/7a1ec4189cecb0ffc8cf5644ba712f71656c50cb

parent-
component.tsx

© ABL - The Problem Solver 71

https://github.com/mauricedb/react-berlin-2023-ws/commit/7a1ec4189cecb0ffc8cf5644ba712f71656c50cb

server-or-client
/page.tsx

© ABL - The Problem Solver 72

https://github.com/mauricedb/react-berlin-2023-ws/commit/7a1ec4189cecb0ffc8cf5644ba712f71656c50cb

Loading the genres on
the server

© ABL - The Problem Solver 73

Loading the
genres on the
server

 Splitting the GenreSelector in a client and a server component
 Client component for interactivity

 Server component for data loading

 The MainNav component still needs to be a client component
 The GenreSelector/Loader can be injected as a prop

© ABL - The Problem Solver 74

genre-selector.tsx

© ABL - The Problem Solver 75

https://github.com/mauricedb/react-berlin-2023-ws/commit/d415d4514da5b5e4394cd195ba86d7fa510e60c8

genre-loader.tsx

© ABL - The Problem Solver 76

https://github.com/mauricedb/react-berlin-2023-ws/commit/d415d4514da5b5e4394cd195ba86d7fa510e60c8

site-header.tsx

© ABL - The Problem Solver 77

https://github.com/mauricedb/react-berlin-2023-ws/commit/d415d4514da5b5e4394cd195ba86d7fa510e60c8

main-nav.tsx

© ABL - The Problem Solver 78

https://github.com/mauricedb/react-berlin-2023-ws/commit/d415d4514da5b5e4394cd195ba86d7fa510e60c8

main-nav.tsx

© ABL - The Problem Solver 79

https://github.com/mauricedb/react-berlin-2023-ws/commit/d415d4514da5b5e4394cd195ba86d7fa510e60c8

Calling Server Actions
From a <form />

© ABL - The Problem Solver 80

Calling Server
Actions

 React Server Actions are functions that we can call on the client
 But then execute on the server

 Add the 'use server' annotation
 Can be at the top of a file or a single function

 Not related to server components

 Can be passed as the action of a client side <form />
 The forms data is passed as a FormData parameter

 Even works if JavaScript is disabled ☺

© ABL - The Problem Solver 81

genre-form.tsx

© ABL - The Problem Solver 82

https://github.com/mauricedb/react-berlin-2023-ws/commit/86e6305005c10e8e0d3b324cf4b3e825f338ba60

Calling Server Actions
Directly

© ABL - The Problem Solver 83

Calling Server
Actions

 Can also be called as a normal asynchronous function
 The network request is handled for you

 Optionally use the useTransition() hook
 For feedback while the server action is executing

© ABL - The Problem Solver 84

checkout-shopping-cart.ts

© ABL - The Problem Solver 85

https://github.com/mauricedb/react-berlin-2023-ws/commit/7d66e11d2918ff99b0334f982f6e389a2c018df0

checkout-dialog.tsx

© ABL - The Problem Solver 86

https://github.com/mauricedb/react-berlin-2023-ws/commit/7d66e11d2918ff99b0334f982f6e389a2c018df0

Recommendations with
React Server Components

© ABL - The Problem Solver 87

Recommendations

 Start with Shared components
 Can run on the server or client as needed

 Will default to act as Server Components

 Switch to Server only components if needed
 When you need to use server side capabilities

 Only use Client only components when absolutely needed
 Local state or side effects

 Interactivity

 Required browser API’s

 Learn all about the new capabilities of Next.js
 App Router

 Caching

© ABL - The Problem Solver 88

Conclusion

 React Server Components are a great new addition to React
 Helps with keeping the client more responsive

 Makes the application architecture easier

 Use Next.js and the App Router
 Because you need a server

 React Client Components
 Are components with state and interactivity and require ‘use client’

 Control caching of React Server Components
 Because Next.js is quite aggressive about caching

 React Server Components are streamed
 And use Suspense boundaries until they are done

 Server Actions are a great way to call back into the server
 They also update the invalidated server components on the client

© ABL - The Problem Solver 89

Thank you for joining

© ABL - The Problem Solver 90

Share your thoughts

https://twitter.com/intent/tweet?text=React%20Server%20Components%20Unleashed:%20A%20Deep%20Dive%20into%20Next-Gen%20Web%20Development%20by%20@mauricedb

	Slide 1
	Slide 2: React Server Components Unleashed: A Deep Dive into Next-Gen Web Development
	Slide 3
	Slide 4: Topics
	Slide 5: Bonus Udemy Course
	Slide 6: Type it out by hand?
	Slide 7: Prerequisites
	Slide 8: Install Node.js & NPM
	Slide 9: Following Along
	Slide 10: Create a new Next.js app
	Slide 11: Adding Shadcn support
	Slide 12: Adding Shadcn components
	Slide 13: The changes
	Slide 14: Clone the GitHub Repository
	Slide 15: Install NPM Packages
	Slide 16: Start branch
	Slide 17: Start the application
	Slide 18: The application
	Slide 19: What are React Server Components?
	Slide 20: React Server Components
	Slide 21: Before RSC
	Slide 22: Server Side Rendering
	Slide 23: With RSC
	Slide 24: React Server Components
	Slide 25: React Server Component
	Slide 26: React Client Components
	Slide 27: Turning a React Client Component into a Server Component
	Slide 28: Client Component to Server Component
	Slide 29: movies /page.tsx
	Slide 30: movie-card.tsx
	Slide 31: movies/[id] /page.tsx
	Slide 32: movie-form.tsx
	Slide 33: Next.js and the App Router
	Slide 34: Next.js and the App Router
	Slide 35: Rendering RSC’s
	Slide 36: Async transport
	Slide 37: Code bundling
	Slide 38: Updates and caching
	Slide 39: Updates and caching
	Slide 40: movies/[id] /page.tsx
	Slide 41: movie-form.tsx
	Slide 42: movies /page.tsx
	Slide 43: Querying the database from an RSC
	Slide 44: Querying the database from an RSC
	Slide 45: movies /page.tsx
	Slide 46: movies/[id] /page.tsx
	Slide 47: api/movies/[id] /route.ts
	Slide 48: Prevent over fetching
	Slide 49: Prevent over fetching
	Slide 50: movies /page.tsx
	Slide 51: Break time
	Slide 52: Suspense & RSC pages
	Slide 53: Suspense & RSC pages
	Slide 54: movies /loading.tsx
	Slide 55: movies /page.tsx
	Slide 56: movies/[id] /page.tsx
	Slide 57: RSC and streaming
	Slide 58: RSC and streaming
	Slide 59: RSC Payload
	Slide 60: Site layout as an RSC
	Slide 61: Site layout as an RSC
	Slide 62: layout.tsx
	Slide 63: main-nav.tsx
	Slide 64: shopping-cart.tsx
	Slide 65: genre-selector.tsx
	Slide 66: What is a server component?
	Slide 67: What is a server component?
	Slide 68: server-only
	Slide 69: Using an RSC as a child of a client component
	Slide 70: child-component.tsx
	Slide 71: parent-component.tsx
	Slide 72: server-or-client /page.tsx
	Slide 73: Loading the genres on the server
	Slide 74: Loading the genres on the server
	Slide 75: genre-selector.tsx
	Slide 76: genre-loader.tsx
	Slide 77: site-header.tsx
	Slide 78: main-nav.tsx
	Slide 79: main-nav.tsx
	Slide 80: Calling Server Actions
	Slide 81: Calling Server Actions
	Slide 82: genre-form.tsx
	Slide 83: Calling Server Actions
	Slide 84: Calling Server Actions
	Slide 85: checkout-shopping-cart.ts
	Slide 86: checkout-dialog.tsx
	Slide 87: Recommendations with React Server Components
	Slide 88: Recommendations
	Slide 89: Conclusion
	Slide 90: Thank you for joining

