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Topics

 What are React Server Components and why would you care?

 Using Next.js and the App Router

 Turning a React Client Component into a React Server Component

 Updates and caching with React Server Components

 Querying the database from a React Server Component

 Suspense & React Server Components

 React Server Components and streaming

 Which components are really React Server Components?

 Using React Server Actions
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Bonus
Udemy
Course
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Code: REACT-BERLIN-2023

https://www.udemy.com/course/boost-your-
developer-potential-with-react-server-

components
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Type it out
by hand?

“Typing it drills it into your brain much better than 
simply copying and pasting it. You're forming new 
neuron pathways. Those pathways are going to 
help you in the future. Help them out now!”

© ABL - The Problem Solver 6



Prerequisites
Install Node & NPM

Install the GitHub repository
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Install 
Node.js & NPM
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https://git-scm.com/downloads
https://nodejs.org/


Following 
Along

 Repo: https://github.com/mauricedb/react-berlin-2023-ws

 Slides: https://bit.ly/react-berlin-2023-ws

© ABL - The Problem Solver 9

https://github.com/mauricedb/react-berlin-2023-ws
https://bit.ly/react-berlin-2023-ws
https://bit.ly/react-berlin-2023-ws


Create a new 
Next.js app
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Adding Shadcn
support
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Adding Shadcn
components
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The changes
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https://github.com/mauricedb/react-berlin-2023-ws/commits/main


Clone the 
GitHub 
Repository
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https://github.com/mauricedb/react-berlin-2023-ws


Install NPM 
Packages
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https://github.com/mauricedb/react-berlin-2023-ws


Start branch  Start with the 00-start branch
 git checkout --track origin/00-start
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Start the 
application
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https://github.com/mauricedb/react-berlin-2023-ws


The 
application
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http://localhost:3000/


What are React Server 
Components?
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React Server 
Components

 React Server Components (RSC) only execute on the server
 Traditionally React components always execute in the browser

 RSC are not the same as Server Side Rendering
 With SSR components are executed both on the client and server

 Applications are a combination of server and client components

 The result: The back and front-end code are more integrated
 Leading to better type safety☺
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Before RSC
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Server Side 
Rendering
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With RSC
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React Server 
Components

 Server components can be asynchronous
 Great to load data from some API

 Server components render just once
 No re-rendering with state changes or event handling

 The server component code is not send to the browser
 Can safely use secure API key’s etc.

 Smaller bundle sizes

 ☞ React Server Components require TypeScript 5.1 ☜
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React Server 
Component
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https://github.com/mauricedb/react-berlin-2023-ws/blob/main/src/components/genre-loader.tsx


React Client 
Components

 Server components can render both server and client components
 Client components can only render other client components

 Adding 'use client’ to the top of a component makes it a client 
component

 Used as a directive for the bundler to include this in the client JS bundle

 A client component is still executed on the server as part of SSR
 When using Next.js
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https://github.com/mauricedb/react-berlin-2023-ws/blob/main/src/components/movie-form.tsx


Turning a React 
Client Component into a 
Server Component
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Client Component
to 
Server Component

 React Server Components normally perform better
 Only render once on the server

 The code doesn’t need to be shipped to the browser

 Can be async and await data to be fetched
 No need for a render/effect/re-render cycle in the browser

 Components that don’t need client capabilities should be RSC’s
 State, effects, browser API’s etc. are client requirements
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movies
/page.tsx
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https://github.com/mauricedb/react-berlin-2023-ws/commit/caa8312a1f10c700f63f01ca01754602e2fe9143


movie-card.tsx
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movies/[id]
/page.tsx
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movie-form.tsx
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Next.js and the 
App Router

© ABL - The Problem Solver 33



Next.js and 
the App 
Router

 React is no longer just a client side library
 We need additional server side capabilities

 As well as additional code bundling options

 Next.js is the best production option available
 Shopify Hydrogen is also an option

 ☞ Remix 2 doesn’t support RSC yet ☜

 There are also more experimental options
 Waku from Daishi Kato

 React Server Components Demo from the React team
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https://waku.gg/
https://github.com/reactjs/server-components-demo


Rendering RSC’s

 React Server Components are only rendered on the server
 And shipped to the client as a JSON like structure

 The React Server Component Payload

 The client then injects these JSON objects into the React tree
 Where it would previously have rendered these components themself

 ☞ React already used a 2 step process☜
 Components render to a virtual DOM

 Just a series of JavaScript objects

 Reconciliation maps the virtual DOM to the browser DOM

 Or an HTML stream in the case or Server Side Rendering
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Async transport  RSC’s are streamed asynchronously to the client
 Enables using Suspense boundaries while loading
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Code bundling

 Multiple JavaScript bundles have to be made 
 The client and server have different code bundles

 Server Component code is never executed on the client
 Can use react-server-dom-webpack or a similar package

© ABL - The Problem Solver 37



Updates and caching
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Updates and 
caching

 Next.js does a lot of optimizations using caching
 Both on the server and client

 The Next.js uses a Data Cache and Full Router Cache on the server
 Use export const dynamic = 'force-dynamic' to make sure data on the 

server isn’t cached

 Can also be controlled at the fetch() level

 The Next.js uses a Router Cache on the client
 Dynamically rendered routes are purged after 30 seconds

 Call router.refresh() to immediately purge the cache

 Make sure to use the router from 'next/navigation’
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https://nextjs.org/docs/app/building-your-application/caching


movies/[id]
/page.tsx
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https://github.com/mauricedb/react-berlin-2023-ws/commit/6588ec6ca034bb8469a65a3f92e4f07264c47134


movie-
form.tsx
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movies
/page.tsx
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Querying the database 
from an RSC

© ABL - The Problem Solver 43



Querying the 
database from 
an RSC

 Because an RSC only runs on the server we can use server side code
 Query the DB using Prisma directly

 It’s save to use secrets like database connection strings

 Never executed in the browser
 Leads to smaller JavaScript bundle sizes
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movies
/page.tsx
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https://github.com/mauricedb/react-berlin-2023-ws/commit/389efb9a45c0a07eee6d9dbc1d1c33c5882db061


movies/[id]
/page.tsx
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https://github.com/mauricedb/react-berlin-2023-ws/commit/389efb9a45c0a07eee6d9dbc1d1c33c5882db061


api/movies/[id]
/route.ts
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Prevent over fetching
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Prevent over 
fetching

 Colocation of DB queries with components enables more optimizations
 Fetch exactly the right amount of data

 No more shared REST queries
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movies
/page.tsx
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https://github.com/mauricedb/react-berlin-2023-ws/commit/eba13cf657a8712e41a05c8bd4a81ec516ada2e5


Break time
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Suspense & RSC pages
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Suspense & 
RSC pages

 React Server Components are suspended until they resolve
 Can be controlled with <Suspense /> boundaries

 Next.js makes it easy to suspend when rendering an async page
 Add a loading.tsx

 They can be nested and the closest loading component will be used
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movies
/loading.tsx
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https://github.com/mauricedb/react-berlin-2023-ws/commit/28b2b942478db20b02561d94cfc85ec35aa65c1d


movies
/page.tsx
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movies/[id]
/page.tsx
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RSC and streaming
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RSC and 
streaming

 Async React Server Components are streamed to the browser
 Using the React Server Component Payload

 On the client they are suspended until the component resolves

 Server action responses can also stream components back
 After a revalidatePath() or a revalidateTag()
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RSC Payload
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Site layout as an RSC
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Site layout as 
an RSC

 A layout.tsx is typically a React Server Component
 But can be a client component if required

 Render server and/or client components as needed
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layout.tsx
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https://github.com/mauricedb/react-berlin-2023-ws/commit/666c6f05d07cf812f91da0a2bc7d5806abcd3d01


main-nav.tsx
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https://github.com/mauricedb/react-berlin-2023-ws/commit/666c6f05d07cf812f91da0a2bc7d5806abcd3d01


shopping-cart.tsx
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https://github.com/mauricedb/react-berlin-2023-ws/commit/666c6f05d07cf812f91da0a2bc7d5806abcd3d01


genre-selector.tsx
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What is a server 
component?
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What is a 
server 
component?

 What is a server component and what is not?
 Client components are marked with 'use client'

 But not all other components are server components
 With a component without 'use client’ it depends on their parents

 If a component is a client component 
 Then all components it renders are also client components

 ☞There is no 'use server' for server components ☜
 The 'use server’ directive exists but is used for Server Actions

 But there is a server-only NPM package
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server-only

 Import the server-only NPM package
 With components that must run on the server
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Using an RSC 
as a child of a 
client 
component

 A client component can have a server component as a child
 As long as it doesn’t render it

 Render the child server component from another server component
 💡And pass it as a children prop into the client component 💡
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child-
component.tsx
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https://github.com/mauricedb/react-berlin-2023-ws/commit/7a1ec4189cecb0ffc8cf5644ba712f71656c50cb


parent-
component.tsx
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https://github.com/mauricedb/react-berlin-2023-ws/commit/7a1ec4189cecb0ffc8cf5644ba712f71656c50cb


server-or-client
/page.tsx
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https://github.com/mauricedb/react-berlin-2023-ws/commit/7a1ec4189cecb0ffc8cf5644ba712f71656c50cb


Loading the genres on 
the server
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Loading the 
genres on the 
server

 Splitting the GenreSelector in a client and a server component
 Client component for interactivity

 Server component for data loading

 The MainNav component still needs to be a client component
 The GenreSelector/Loader can be injected as a prop
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genre-selector.tsx
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https://github.com/mauricedb/react-berlin-2023-ws/commit/d415d4514da5b5e4394cd195ba86d7fa510e60c8


genre-loader.tsx
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https://github.com/mauricedb/react-berlin-2023-ws/commit/d415d4514da5b5e4394cd195ba86d7fa510e60c8


site-header.tsx
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https://github.com/mauricedb/react-berlin-2023-ws/commit/d415d4514da5b5e4394cd195ba86d7fa510e60c8


main-nav.tsx
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https://github.com/mauricedb/react-berlin-2023-ws/commit/d415d4514da5b5e4394cd195ba86d7fa510e60c8


main-nav.tsx
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https://github.com/mauricedb/react-berlin-2023-ws/commit/d415d4514da5b5e4394cd195ba86d7fa510e60c8


Calling Server Actions
From a <form />
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Calling Server 
Actions

 React Server Actions are functions that we can call on the client
 But then execute on the server

 Add the 'use server' annotation
 Can be at the top of a file or a single function

 Not related to server components

 Can be passed as the action of a client side <form /> 
 The forms data is passed as a FormData parameter

 Even works if JavaScript is disabled ☺
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genre-form.tsx
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https://github.com/mauricedb/react-berlin-2023-ws/commit/86e6305005c10e8e0d3b324cf4b3e825f338ba60


Calling Server Actions
Directly
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Calling Server 
Actions

 Can also be called as a normal asynchronous function
 The network request is handled for you

 Optionally use the useTransition() hook
 For feedback while the server action is executing
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checkout-shopping-cart.ts
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https://github.com/mauricedb/react-berlin-2023-ws/commit/7d66e11d2918ff99b0334f982f6e389a2c018df0


checkout-dialog.tsx
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Recommendations with 
React Server Components
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Recommendations

 Start with Shared components
 Can run on the server or client as needed

 Will default to act as Server Components

 Switch to Server only components if needed
 When you need to use server side capabilities

 Only use Client only components when absolutely needed
 Local state or side effects

 Interactivity

 Required browser API’s

 Learn all about the new capabilities of Next.js
 App Router

 Caching
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Conclusion

 React Server Components are a great new addition to React
 Helps with keeping the client more responsive

 Makes the application architecture easier

 Use Next.js and the App Router
 Because you need a server

 React Client Components
 Are components with state and interactivity and require ‘use client’

 Control caching of React Server Components
 Because Next.js is quite aggressive about caching

 React Server Components are streamed
 And use Suspense boundaries until they are done

 Server Actions are a great way to call back into the server
 They also update the invalidated server components on the client

© ABL - The Problem Solver 89



Thank you for joining
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Share your thoughts

https://twitter.com/intent/tweet?text=React%20Server%20Components%20Unleashed:%20A%20Deep%20Dive%20into%20Next-Gen%20Web%20Development%20by%20@mauricedb
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