
© ABL - The Problem Solver 1

Topics

 What are React Server Components and why would you care?

 Using Next.js and the App Router

 Turning a React Client Component into a React Server
Component

 Updates and caching with React Server Components

 Querying the database from a React Server Component

 Suspense & React Server Components

 React Server Components and streaming

 Which components are really React Server Components?

 Using React Server Actions to execute code on the server

© ABL - The Problem Solver 2

See you in the next video
Personal introduction

© ABL - The Problem Solver 3

© ABL - The Problem Solver 4

Personal introduction

© ABL - The Problem Solver 5

 Maurice de Beijer

 The Problem Solver

 Microsoft MVP

 Freelance developer/instructor

 Currently at https://someday.com/

 Twitter: @mauricedb

 Web: http://www.TheProblemSolver.nl

 E-mail: maurice.de.beijer@gmail.com

6© ABL - The Problem Solver

https://someday.com/
https://twitter.com/MauriceDB
http://www.theproblemsolver.nl/
mailto:maurice.de.beijer@gmail.com
http://www.theproblemsolver.nl/

© ABL - The Problem Solver 7

© ABL - The Problem Solver 8

The React
Newsletter

© ABL - The Problem Solver 9

http://bit.ly/ReactNewsletter

See you in the next video
Prerequisites

© ABL - The Problem Solver 10

© ABL - The Problem Solver 11

Prerequisites
Install Node & NPM

Install the GitHub repository

© ABL - The Problem Solver 12

Install
Node.js & NPM

© ABL - The Problem Solver 13

https://git-scm.com/downloads
https://nodejs.org/en

Following
Along

 Repo: https://bit.ly/rsc-training-23-github

 Slides: https://bit.ly/rsc-training-23-slides

© ABL - The Problem Solver 14

https://bit.ly/rsc-training-23-github
https://bit.ly/rsc-training-23-slides
https://github.com/mauricedb/reactadvanced-2023-ws/commit/6be09f1b9e6020444ab53adb1555a9cf235e34dd

Create a new
Next.js app

© ABL - The Problem Solver 15

https://nextjs.org/docs/getting-started/installation

Adding Shadcn
support

© ABL - The Problem Solver 16

https://ui.shadcn.com/docs/components/

Adding Shadcn
components

© ABL - The Problem Solver 17

The changes

© ABL - The Problem Solver 18

https://github.com/mauricedb/react-server-components-training-23/commits/main

See you in the next video
Cloning the GitHub repository

© ABL - The Problem Solver 19

© ABL - The Problem Solver 20

Cloning the GitHub
repository
And running the application

© ABL - The Problem Solver 21

Clone the
GitHub
Repository

© ABL - The Problem Solver 22

https://bit.ly/rsc-training-23-github

Install NPM
Packages

© ABL - The Problem Solver 23

https://bit.ly/rsc-training-23-github

Start branch

© ABL - The Problem Solver 24

 Start with the 00-start branch
 git checkout --track origin/00-start

Start the
application

© ABL - The Problem Solver 25

https://bit.ly/rsc-training-23-github

The
application

© ABL - The Problem Solver 26

http://localhost:3000/

See you in the next video
What are React Server Components?

© ABL - The Problem Solver 27

© ABL - The Problem Solver 28

What are React Server
Components?

© ABL - The Problem Solver 29

React Server
Components

 React Server Components (RSC) only execute on the server
 Traditionally React components always execute in the browser

 RSC are not the same as Server Side Rendering
 With SSR components are executed both on the client and server

 Applications are a combination of server and client components

 The result: The back and front-end code are more integrated
 Leading to better type safety☺

© ABL - The Problem Solver 30

Before RSC

© ABL - The Problem Solver 31

Server Side
Rendering

© ABL - The Problem Solver 32

With RSC

© ABL - The Problem Solver 33

React Server
Components

© ABL - The Problem Solver 34

 Server components can be asynchronous
 Great to load data from some API

 Server components render just once
 No re-rendering with state changes or event handling

 The server component code is not send to the browser
 Can safely use secure API key’s etc.

 Smaller bundle sizes

 React Server Components can be authored in TypeScript
 RSC require TypeScript 5.1 or later

React Server
Component

© ABL - The Problem Solver 35

React Client
Components

© ABL - The Problem Solver 36

 Server components can render both server and client components
 Client components can only render other client components

 Adding 'use client’ to the top of a component makes it a client
component

 Used as a directive for the bundler to include this in the client JS bundle

 A client component is still executed on the server as part of SSR
 When using Next.js

Rendering RSC’s

 React Server Components are only rendered on the server
 And shipped to the client as a JSON like structure

 The React Server Component Payload

 The client then injects these JSON objects into the React tree
 Where it would previously have rendered these components themself

 ☞ React already used a 2 step process☜
 Components render to a virtual DOM

 Just a series of JavaScript objects

 Reconciliation maps the virtual DOM to the browser DOM

 Or an HTML stream in the case or Server Side Rendering

© ABL - The Problem Solver 37

Write JSX

© ABL - The Problem Solver 38

Turned into
createElement()

© ABL - The Problem Solver 39

Returns the
Virtual DOM

© ABL - The Problem Solver 40

Before RSC

© ABL - The Problem Solver 41

With RSC

© ABL - The Problem Solver 42

With RSC
and RCC

© ABL - The Problem Solver 43

Async transport  RSC’s are streamed asynchronously to the client
 Enables using Suspense boundaries while loading

© ABL - The Problem Solver 44

Code bundling

 Multiple JavaScript bundles have to be made
 The client and server have different code bundles

 Server Component code is never executed on the client
 Can use react-server-dom-webpack or a similar package

© ABL - The Problem Solver 45

See you in the next video
Next.js and the App Router

© ABL - The Problem Solver 46

© ABL - The Problem Solver 47

Next.js and the
App Router

© ABL - The Problem Solver 48

Next.js and
the App
Router

 React is no longer just a client side library
 We need additional server side capabilities

 As well as additional code bundling options

 Next.js is the best production option available
 Shopify Hydrogen is also an option

 ☞ Remix 2 doesn’t support RSC yet ☜

 There are also more experimental options
 Waku from Daishi Kato

 React Server Components Demo from the React team

© ABL - The Problem Solver 49

https://waku.gg/
https://github.com/reactjs/server-components-demo

Waku

© ABL - The Problem Solver 50

Server
Component

© ABL - The Problem Solver 51

Client
Component

© ABL - The Problem Solver 52

See you in the next video
Turning a React Client Component into a Server Component

© ABL - The Problem Solver 53

© ABL - The Problem Solver 54

Turning a React
Client Component into a
Server Component

© ABL - The Problem Solver 55

Client Component
to
Server Component

 React Server Components normally perform better
 Only render once on the server

 The code doesn’t need to be shipped to the browser

 Can be async and await data to be fetched
 No need for a render/effect/re-render cycle in the browser

 Components that don’t need client capabilities should be SRC’s
 State, effects, browser API’s etc. are client requirements

© ABL - The Problem Solver 56

movies
/page.tsx

© ABL - The Problem Solver 57

https://github.com/mauricedb/react-server-components-training-23/commit/ee61896aa13570dae00bfa1edb555c810123426e

movie-card.tsx

© ABL - The Problem Solver 58

https://github.com/mauricedb/react-server-components-training-23/commit/ee61896aa13570dae00bfa1edb555c810123426e

See you in the next video
Updating the movies by genre and the movie details pages

© ABL - The Problem Solver 59

© ABL - The Problem Solver 60

Updating the movies by
genre and the movie
details pages

© ABL - The Problem Solver 61

Updating the
movies by genre
and the movie
details pages

 The MoviesByGenrePage and MoviePage also fetch on the client
 Lets make these React Server Components as well

© ABL - The Problem Solver 62

movies/by-genre
/page.tsx

© ABL - The Problem Solver 63

https://github.com/mauricedb/react-server-components-training-23/commit/9d526b7189acaf36e198db87bf5fb70f2085851c

movies/[id]
/page.tsx

© ABL - The Problem Solver 64

https://github.com/mauricedb/react-server-components-training-23/commit/9d526b7189acaf36e198db87bf5fb70f2085851c

movie-form.tsx

© ABL - The Problem Solver 65

https://github.com/mauricedb/react-server-components-training-23/commit/9d526b7189acaf36e198db87bf5fb70f2085851c

See you in the next video
Making the movie card mostly a RSC

© ABL - The Problem Solver 66

© ABL - The Problem Solver 67

Making the movie card
mostly a RSC

© ABL - The Problem Solver 68

Making the movie
card mostly a RSC

 The MovieCard is not a very interactive component
 Only the Add to card button is interactive

 Recommended to split it into two components
 An RSC with the movie card

 And a client component with the button.

 Optionally: use dynamic loading without SSR
 Clients with no JavaScript don’t get a non operational button

© ABL - The Problem Solver 69

add-to-
shopping-cart-
button.tsx

© ABL - The Problem Solver 70

https://github.com/mauricedb/react-server-components-training-23/commit/df22867a7a8be6f9191da2ce0594e9c7972f141c

movie-card.tsx

© ABL - The Problem Solver 71

https://github.com/mauricedb/react-server-components-training-23/commit/df22867a7a8be6f9191da2ce0594e9c7972f141c

See you in the next video
Updates and caching in Next.js

© ABL - The Problem Solver 72

© ABL - The Problem Solver 73

Updates and caching
In Next.js

© ABL - The Problem Solver 74

Updates and
caching

© ABL - The Problem Solver 75

 Next.js does a lot of optimizations using caching
 Both on the server and client

 The Next.js uses a Data Cache and Full Router Cache on the server
 Use export const dynamic = 'force-dynamic' to make sure data on the

server isn’t cached

 Can also be controlled at the fetch() level

 The Next.js uses a Router Cache on the client
 Dynamically rendered routes are purged after 30 seconds

 Call router.refresh() to immediately purge the cache

 Make sure to use the router from 'next/navigation’

https://nextjs.org/docs/app/building-your-application/caching

movies/[id]
/page.tsx

© ABL - The Problem Solver 76

https://github.com/mauricedb/react-server-components-training-23/commit/9ebe4cd0dbb51a2415ff71b383f2604c3e89c13e

movie-
form.tsx

© ABL - The Problem Solver 77

https://github.com/mauricedb/react-server-components-training-23/commit/9ebe4cd0dbb51a2415ff71b383f2604c3e89c13e

movies
/page.tsx

© ABL - The Problem Solver 78

https://github.com/mauricedb/react-server-components-training-23/commit/9ebe4cd0dbb51a2415ff71b383f2604c3e89c13e

movies/by-genre/
[genre]/page.tsx

© ABL - The Problem Solver 79

https://github.com/mauricedb/react-server-components-training-23/commit/9ebe4cd0dbb51a2415ff71b383f2604c3e89c13e

See you in the next video
Querying the database from a React Server Component

© ABL - The Problem Solver 80

© ABL - The Problem Solver 81

Querying the database
from an RSC

© ABL - The Problem Solver 82

Querying the
database from
an RSC

© ABL - The Problem Solver 83

 Using REST to load the data results in overhead
 Using the network to call back into the same application

 Serializing and deserializing the data as JSON

 Because an RSC only runs on the server we can use server side code
 Query the DB using Prisma directly

 It’s save to use secrets like database connection strings

 Never executed in the browser
 Leads to smaller JavaScript bundle sizes

movies
/page.tsx

© ABL - The Problem Solver 84

https://github.com/mauricedb/react-server-components-training-23/commit/9881f7de8c7766b53d5ba68ae05ea2e7cc8d73a2

movies/by-
genre
/page.tsx

© ABL - The Problem Solver 85

https://github.com/mauricedb/react-server-components-training-23/commit/9881f7de8c7766b53d5ba68ae05ea2e7cc8d73a2

movies/[id]
/page.tsx

© ABL - The Problem Solver 86

https://github.com/mauricedb/react-server-components-training-23/commit/9881f7de8c7766b53d5ba68ae05ea2e7cc8d73a2

api/movies/[id]
/route.ts

© ABL - The Problem Solver 87

https://github.com/mauricedb/react-server-components-training-23/commit/9881f7de8c7766b53d5ba68ae05ea2e7cc8d73a2

See you in the next video
Prevent over fetching of data

© ABL - The Problem Solver 88

© ABL - The Problem Solver 89

Prevent over fetching

© ABL - The Problem Solver 90

Prevent over
fetching

 Colocation of DB queries with components enables more optimizations
 Fetch exactly the right amount of data

 No more shared REST queries

© ABL - The Problem Solver 91

movies
/page.tsx

© ABL - The Problem Solver 92

https://github.com/mauricedb/react-server-components-training-23/commit/9881f7de8c7766b53d5ba68ae05ea2e7cc8d73a2

movies/by-
genre
/page.tsx

© ABL - The Problem Solver 93

https://github.com/mauricedb/react-server-components-training-23/commit/9881f7de8c7766b53d5ba68ae05ea2e7cc8d73a2

See you in the next video
Suspense and React Server Components

© ABL - The Problem Solver 94

© ABL - The Problem Solver 95

Suspense & RSC pages

© ABL - The Problem Solver 96

Suspense &
RSC pages

 React Server Components are suspended until they resolve
 Can be controlled with <Suspense /> boundaries

 Next.js makes it easy to suspend when rendering an async page
 Add a loading.tsx

 They can be nested and the closest loading component will be used

© ABL - The Problem Solver 97

movies
/loading.tsx

© ABL - The Problem Solver 98

https://github.com/mauricedb/react-server-components-training-23/commit/104553837f3867dd1d7af36b0c2ef0592349c742

movies
/page.tsx

© ABL - The Problem Solver 99

https://github.com/mauricedb/react-server-components-training-23/commit/104553837f3867dd1d7af36b0c2ef0592349c742

See you in the next video
React Server Components and streaming

© ABL - The Problem Solver 100

© ABL - The Problem Solver 101

RSC and streaming

© ABL - The Problem Solver 102

RSC and
streaming

 Async React Server Components are streamed to the browser
 Using the React Server Component Payload

 On the client they are suspended until the component resolves

 Server action responses can also stream components back
 After a revalidatePath() or a revalidateTag()

© ABL - The Problem Solver 103

RSC Payload

© ABL - The Problem Solver 104

See you in the next video
What is a server component?

© ABL - The Problem Solver 105

© ABL - The Problem Solver 106

What is a server
component?

© ABL - The Problem Solver 107

Afbeelding van Tumisu via Pixabay© ABL - The Problem Solver 108

https://bit.ly/34sRAc0
https://pixabay.com/nl/users/tumisu-148124/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=5723449
https://pixabay.com/nl/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=5723449

What is a
server
component?

 What is a server component and what is not?
 Client components are marked with 'use client'

 But not all other components are server components
 With a component without 'use client’ it depends on their parents

 If a component is a client component
 Then all components it renders are also client components

 ☞There is no 'use server' for server components ☜
 The 'use server’ directive exists but is used for Server Actions

 But there is a server-only NPM package

© ABL - The Problem Solver 109

Async Client
Components

© ABL - The Problem Solver 110

 Client components can’t be asynchronous yet
 But the error doesn’t reliably show up

server-only

© ABL - The Problem Solver 111

 Import the server-only NPM package
 With components that must run on the server

Using an RSC
as a child of a
client
component

© ABL - The Problem Solver 112

 A client component can have a server component as a child
 As long as it doesn’t render it

 Render the child server component from another server component
 And pass it as a children prop into the client component

child-
component.tsx

© ABL - The Problem Solver 113

https://github.com/mauricedb/react-server-components-training-23/commit/bd0b36e7bea132deacc2653cdd87ec9a757bae71

parent-
component.tsx

© ABL - The Problem Solver 114

https://github.com/mauricedb/reactadvanced-2023-ws/commit/314db052370197a5ad689905d3ecc276d0636b15

server-or-client
/page.tsx

© ABL - The Problem Solver 115

https://github.com/mauricedb/react-server-components-training-23/commit/bd0b36e7bea132deacc2653cdd87ec9a757bae71

See you in the next video
Loading the genres in the menu on the server

© ABL - The Problem Solver 116

© ABL - The Problem Solver 117

Loading the genres in
the menu on the server

© ABL - The Problem Solver 118

Loading the
genres on the
server

 The <GenreSelector/> component can’t be rendered on the server
 The parent component <MainNav/> is a client component

 The <SiteHeader /> is a server component
 It can access the database and load the genres

© ABL - The Problem Solver 119

genre-loader.tsx

© ABL - The Problem Solver 120

https://github.com/mauricedb/react-server-components-training-23/commit/7bada7e9b30f68a475e08e50fbee2e1cf65fc2fb

genre-selector.tsx

© ABL - The Problem Solver 121

https://github.com/mauricedb/react-server-components-training-23/commit/7bada7e9b30f68a475e08e50fbee2e1cf65fc2fb

site-header.tsx

© ABL - The Problem Solver 122

https://github.com/mauricedb/react-server-components-training-23/commit/7bada7e9b30f68a475e08e50fbee2e1cf65fc2fb

main-nav.tsx

© ABL - The Problem Solver 123

https://github.com/mauricedb/react-server-components-training-23/commit/7bada7e9b30f68a475e08e50fbee2e1cf65fc2fb

See you in the next video

© ABL - The Problem Solver 124

© ABL - The Problem Solver 125

External Dependencies

© ABL - The Problem Solver 126

External
Dependencies

 Not every external component includes `use client` where required
 Making them hard to use from a React Server Component

 Create a simple wrapper file with `use client`
 And re-export the same component

 This problem will go away over time
 When adding ‘use client` becomes the standard

 Please create pull requests for open source NPM packages

© ABL - The Problem Solver 127

counter.tsx

© ABL - The Problem Solver 128

https://github.com/mauricedb/react-server-components-training-23/commit/da64add4a7c88511754be3611b2eb20322e3bcd5

client-
counter.tsx

© ABL - The Problem Solver 129

https://github.com/mauricedb/react-server-components-training-23/commit/da64add4a7c88511754be3611b2eb20322e3bcd5

page.tsx

© ABL - The Problem Solver 130

https://github.com/mauricedb/react-server-components-training-23/commit/da64add4a7c88511754be3611b2eb20322e3bcd5

See you in the next video

© ABL - The Problem Solver 131

© ABL - The Problem Solver 132

Unit Testing

© ABL - The Problem Solver 133

Unit Testing

 Unit testing of async React Server Components is still tricky
 There is no good support from React Testing Library

 Consider using end to end testing for async components
 Tools like Cypress or Playwright work well

 Unit testing can be done with a few hacks now
 Stay tuned for then this becomes better

© ABL - The Problem Solver 134

page.test.tsx

© ABL - The Problem Solver 135

https://github.com/mauricedb/react-server-components-training-23/commit/481f0ff5bcfc2fcc55da2f018414ffe213385915

movie-list.test.tsx

© ABL - The Problem Solver 136

https://github.com/mauricedb/react-server-components-training-23/commit/481f0ff5bcfc2fcc55da2f018414ffe213385915

See you in the next video

© ABL - The Problem Solver 137

© ABL - The Problem Solver 138

Testing async RSC’s

© ABL - The Problem Solver 139

Testing async
RSC’s

 React Testing Library has no support for async components yet
 As of February 2024

 Hopefully that will be released soon

 A component is just a function
 Call it as a normal function and await the rendered elements

 Wrapping an async RSC component in <Suspense /> can also help

© ABL - The Problem Solver 140

Recommendation

 Unit test the normal components instead of the async RSC’s
 Use async RSC to load data and pass this into normal components

 Use end to end testing if you need to test logic in an async RSC
 But avoid this when possible as it is slower

© ABL - The Problem Solver 141

page.test.tsx

© ABL - The Problem Solver 142

https://github.com/mauricedb/react-server-components-training-23/commit/63121a3dc859eba967c0305b7d9c7a63bcaf4b37

See you in the next video

© ABL - The Problem Solver 143

© ABL - The Problem Solver 144

Server Actions

© ABL - The Problem Solver 145

Server Actions

 Server actions are async functions that are executed on the server
 Network serialization is done automatically

 The ‘use server’ directive marks a function as a server action
 Can be added to the top of a file or individual function

 Server actions can return a value to the caller
 Intended for mutations

 Not to request large sets of data

 They can be passed from a RSC to a client component as a prop
 Even though a function reference is normally not serializable

 Can also be used to invalidate the client cache in Next.js
 When revalidatePath() or revalidateTag() is used on the server

© ABL - The Problem Solver 146

Submitting
a form

© ABL - The Problem Solver 147

Server Actions
and security

 Server actions are network calls
 Just like another fetch request

 Always treat input as untrusted
 Never assume client side validations etc. have been done

© ABL - The Problem Solver 148

Server Actions
& HTML forms

 An HTML form can call a server action using the action prop
 This will even work when JavaScript is disabled in the browser

 Form data is passed as a FormData type parameter

 There are several hooks that make the client code more capable
 useFormState

 Allows updating form state based on the result of a form action

 useFormStatus

 Provides status information of the form submission

© ABL - The Problem Solver 149

https://react.dev/reference/react-dom/hooks/useFormState
https://react.dev/reference/react-dom/hooks/useFormStatus

Calling a
Server Action
directly

 Server actions can be called directly
 Just like any other async functions

 Arguments can be any serializable data type
 Not just FormData

© ABL - The Problem Solver 150

See you in the next video
Calling Server Actions from a <form />

© ABL - The Problem Solver 151

© ABL - The Problem Solver 152

Calling Server Actions
From a <form />

© ABL - The Problem Solver 153

Calling Server
Actions

 React Server Actions are functions that we can call on the client
 But then execute on the server

 Add the 'use server' annotation
 Can be at the top of a file or a single function

 Not related to server components

 Can be passed as the action of a client side <form />
 The forms data is passed as a FormData parameter

 Even works if JavaScript is disabled ☺

 Can also be called as a normal asynchronous function
 The network request is handled for you

 Redirect to a different route if required

© ABL - The Problem Solver 154

/genres/[id]
/page.tsx

© ABL - The Problem Solver 155

https://github.com/mauricedb/react-server-components-training-23/commit/c856c4b2ffcb39c88480fe3e1f403f7b73dcacdb

genre-form.tsx

© ABL - The Problem Solver 156

https://github.com/mauricedb/react-server-components-training-23/commit/c856c4b2ffcb39c88480fe3e1f403f7b73dcacdb

See you in the next video
Using the useFormStatus() hook

© ABL - The Problem Solver 157

© ABL - The Problem Solver 158

The useFormStatus() hook
With a <form />

© ABL - The Problem Solver 159

The
useFormStatus()
hook

© ABL - The Problem Solver 160

 The useFormStatus() hook gives you form status information
 If a request is in progress and if so the form data

 It must be used in a different component than the form
 Must be rendered as a child component of the <form/>

submit-button.tsx

© ABL - The Problem Solver 161

https://github.com/mauricedb/react-server-components-training-23/commit/852e18d14c9883068b93cbfaab1b05e402e47f5f

genre-form.tsx

© ABL - The Problem Solver 162

https://github.com/mauricedb/react-server-components-training-23/commit/852e18d14c9883068b93cbfaab1b05e402e47f5f

See you in the next video
Using the useFormState() hook

© ABL - The Problem Solver 163

© ABL - The Problem Solver 164

The useFormState() hook
With a <form />

© ABL - The Problem Solver 165

The
useFormState()
hook

© ABL - The Problem Solver 166

 The useFormState() allows you to update state based on an action
 It takes the original action as a parameter and returns a new action

 The React Server Action returns the new state
 And receives the previous state as the first parameter

 Still works if JavaScript is disabled☺

/genres/[id]
/page.tsx

© ABL - The Problem Solver 167

https://github.com/mauricedb/react-server-components-training-23/commit/50f96e9a9a66c03255db99d9e2c017957f71f8b9

genre-form.tsx

© ABL - The Problem Solver 168

https://github.com/mauricedb/react-server-components-training-23/commit/50f96e9a9a66c03255db99d9e2c017957f71f8b9

See you in the next video
Using custom actions with a <button />

© ABL - The Problem Solver 169

© ABL - The Problem Solver 170

Using custom actions
With a <button />

© ABL - The Problem Solver 171

Using custom
actions

© ABL - The Problem Solver 172

 A submit button can have a formAction prop
 Overrides the form action

 Useful if you want multiple different actions for a <form />
 Add to shopping cart or add to favorites for example

 Still works if JavaScript is disabled☺

/genres/[id]
/page.tsx

© ABL - The Problem Solver 173

https://github.com/mauricedb/react-server-components-training-23/commit/fc11d1077e93b8aa589137b5c0b200e58c018766

genre-form.tsx

© ABL - The Problem Solver 174

https://github.com/mauricedb/react-server-components-training-23/commit/fc11d1077e93b8aa589137b5c0b200e58c018766

See you in the next video
Calling Server Actions from any other code

© ABL - The Problem Solver 175

© ABL - The Problem Solver 176

Calling Server Actions
From any other code

© ABL - The Problem Solver 177

Calling Server
Actions

 React Server Actions can also used directly
 Called as a normal asynchronous function

 It’s still an HTTP post request behind scenes
 The network request is automatically handled for you

© ABL - The Problem Solver 178

checkout-shopping-cart.ts

© ABL - The Problem Solver 179

https://github.com/mauricedb/react-server-components-training-23/commit/7c5d968622e6bdd4507e042fae2d861a3dbe2b6a

checkout-dialog.tsx

© ABL - The Problem Solver 180

https://github.com/mauricedb/react-server-components-training-23/commit/7c5d968622e6bdd4507e042fae2d861a3dbe2b6a

See you in the next video

© ABL - The Problem Solver 181

© ABL - The Problem Solver 185

Recommendations with
React Server Components

© ABL - The Problem Solver 186

Recommendations

 Start with Shared components
 Can run on the server or client as needed

 Will default to act as Server Components

 Switch to Server only components if needed
 When you need to use server side capabilities

 Only use Client only components when absolutely needed
 Local state or side effects

 Interactivity

 Required browser API’s

 Learn all about the new capabilities of Next.js
 App Router

 Caching

© ABL - The Problem Solver 187

Conclusion

 React Server Components are a great new addition to React
 Helps with keeping the client more responsive

 Makes the application architecture easier

 Use Next.js and the App Router
 Because you need a server

 React Client Components
 Are components with state and interactivity and require ‘use client’

 Control caching of React Server Components
 Because Next.js is quite aggressive about caching

 React Server Components are streamed
 And uses Suspense boundaries until they are done

 Server Actions are a great way to call back into the server
 They also update the invalidated server components on the client

© ABL - The Problem Solver 188

Thank you for joining

© ABL - The Problem Solver 189

Share your thoughts

https://twitter.com/intent/tweet?text=Boost%20Your%20Developer%20Potential%20with%20React%20Server%20Components%20by%20@mauricedb

	Slide 1
	Slide 2: Topics
	Slide 3: See you in the next video
	Slide 4
	Slide 5: Personal introduction
	Slide 6
	Slide 7
	Slide 8
	Slide 9: The React Newsletter
	Slide 10: See you in the next video
	Slide 11
	Slide 12: Prerequisites
	Slide 13: Install Node.js & NPM
	Slide 14: Following Along
	Slide 15: Create a new Next.js app
	Slide 16: Adding Shadcn support
	Slide 17: Adding Shadcn components
	Slide 18: The changes
	Slide 19: See you in the next video
	Slide 20
	Slide 21: Cloning the GitHub repository
	Slide 22: Clone the GitHub Repository
	Slide 23: Install NPM Packages
	Slide 24: Start branch
	Slide 25: Start the application
	Slide 26: The application
	Slide 27: See you in the next video
	Slide 28
	Slide 29: What are React Server Components?
	Slide 30: React Server Components
	Slide 31: Before RSC
	Slide 32: Server Side Rendering
	Slide 33: With RSC
	Slide 34: React Server Components
	Slide 35: React Server Component
	Slide 36: React Client Components
	Slide 37: Rendering RSC’s
	Slide 38: Write JSX
	Slide 39: Turned into createElement()
	Slide 40: Returns the Virtual DOM
	Slide 41: Before RSC
	Slide 42: With RSC
	Slide 43: With RSC and RCC
	Slide 44: Async transport
	Slide 45: Code bundling
	Slide 46: See you in the next video
	Slide 47
	Slide 48: Next.js and the App Router
	Slide 49: Next.js and the App Router
	Slide 50: Waku
	Slide 51: Server Component
	Slide 52: Client Component
	Slide 53: See you in the next video
	Slide 54
	Slide 55: Turning a React Client Component into a Server Component
	Slide 56: Client Component to Server Component
	Slide 57: movies /page.tsx
	Slide 58: movie-card.tsx
	Slide 59: See you in the next video
	Slide 60
	Slide 61: Updating the movies by genre and the movie details pages
	Slide 62: Updating the movies by genre and the movie details pages
	Slide 63: movies/by-genre /page.tsx
	Slide 64: movies/[id] /page.tsx
	Slide 65: movie-form.tsx
	Slide 66: See you in the next video
	Slide 67
	Slide 68: Making the movie card mostly a RSC
	Slide 69: Making the movie card mostly a RSC
	Slide 70: add-to-shopping-cart-button.tsx
	Slide 71: movie-card.tsx
	Slide 72: See you in the next video
	Slide 73
	Slide 74: Updates and caching
	Slide 75: Updates and caching
	Slide 76: movies/[id] /page.tsx
	Slide 77: movie-form.tsx
	Slide 78: movies /page.tsx
	Slide 79: movies/by-genre/ [genre]/page.tsx
	Slide 80: See you in the next video
	Slide 81
	Slide 82: Querying the database from an RSC
	Slide 83: Querying the database from an RSC
	Slide 84: movies /page.tsx
	Slide 85: movies/by-genre /page.tsx
	Slide 86: movies/[id] /page.tsx
	Slide 87: api/movies/[id] /route.ts
	Slide 88: See you in the next video
	Slide 89
	Slide 90: Prevent over fetching
	Slide 91: Prevent over fetching
	Slide 92: movies /page.tsx
	Slide 93: movies/by-genre /page.tsx
	Slide 94: See you in the next video
	Slide 95
	Slide 96: Suspense & RSC pages
	Slide 97: Suspense & RSC pages
	Slide 98: movies /loading.tsx
	Slide 99: movies /page.tsx
	Slide 100: See you in the next video
	Slide 101
	Slide 102: RSC and streaming
	Slide 103: RSC and streaming
	Slide 104: RSC Payload
	Slide 105: See you in the next video
	Slide 106
	Slide 107: What is a server component?
	Slide 108
	Slide 109: What is a server component?
	Slide 110: Async Client Components
	Slide 111: server-only
	Slide 112: Using an RSC as a child of a client component
	Slide 113: child-component.tsx
	Slide 114: parent-component.tsx
	Slide 115: server-or-client /page.tsx
	Slide 116: See you in the next video
	Slide 117
	Slide 118: Loading the genres in the menu on the server
	Slide 119: Loading the genres on the server
	Slide 120: genre-loader.tsx
	Slide 121: genre-selector.tsx
	Slide 122: site-header.tsx
	Slide 123: main-nav.tsx
	Slide 124: See you in the next video
	Slide 125
	Slide 126: External Dependencies
	Slide 127: External Dependencies
	Slide 128: counter.tsx
	Slide 129: client-counter.tsx
	Slide 130: page.tsx
	Slide 131: See you in the next video
	Slide 132
	Slide 133: Unit Testing
	Slide 134: Unit Testing
	Slide 135: page.test.tsx
	Slide 136: movie-list.test.tsx
	Slide 137: See you in the next video
	Slide 138
	Slide 139: Testing async RSC’s
	Slide 140: Testing async RSC’s
	Slide 141: Recommendation
	Slide 142: page.test.tsx
	Slide 143: See you in the next video
	Slide 144
	Slide 145: Server Actions
	Slide 146: Server Actions
	Slide 147: Submitting a form
	Slide 148: Server Actions and security
	Slide 149: Server Actions & HTML forms
	Slide 150: Calling a Server Action directly
	Slide 151: See you in the next video
	Slide 152
	Slide 153: Calling Server Actions
	Slide 154: Calling Server Actions
	Slide 155: /genres/[id] /page.tsx
	Slide 156: genre-form.tsx
	Slide 157: See you in the next video
	Slide 158
	Slide 159: The useFormStatus() hook
	Slide 160: The useFormStatus() hook
	Slide 161: submit-button.tsx
	Slide 162: genre-form.tsx
	Slide 163: See you in the next video
	Slide 164
	Slide 165: The useFormState() hook
	Slide 166: The useFormState() hook
	Slide 167: /genres/[id] /page.tsx
	Slide 168: genre-form.tsx
	Slide 169: See you in the next video
	Slide 170
	Slide 171: Using custom actions
	Slide 172: Using custom actions
	Slide 173: /genres/[id] /page.tsx
	Slide 174: genre-form.tsx
	Slide 175: See you in the next video
	Slide 176
	Slide 177: Calling Server Actions
	Slide 178: Calling Server Actions
	Slide 179: checkout-shopping-cart.ts
	Slide 180: checkout-dialog.tsx
	Slide 181: See you in the next video
	Slide 185
	Slide 186: Recommendations with React Server Components
	Slide 187: Recommendations
	Slide 188: Conclusion
	Slide 189: Thank you for joining

