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Topics

 What are React Server Components and why would you care?

 Using Next.js and the App Router

 Turning a React Client Component into a React Server Component

 Updates and caching with React Server Components

 Querying the database from a React Server Component

 Suspense & React Server Components

 React Server Components and streaming

 Which components are really React Server Components?

 Using React Server Actions
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Type it out
by hand?

“Typing it drills it into your brain much better than 
simply copying and pasting it. You're forming new 
neuron pathways. Those pathways are going to 
help you in the future. Help them out now!”
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Prerequisites
Install Node & NPM

Install the GitHub repository
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Install 
Node.js & NPM
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https://git-scm.com/downloads
https://nodejs.org/en/


Following 
Along

 Repo: https://github.com/mauricedb/react-server-components-24 

 Slides: https://www.theproblemsolver.dev/docs/react-advanced-
2024.pdf 
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Create a new 
Next.js app 
with shadcn/ui

 npx shadcn@latest init --src-dir
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The changes
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https://github.com/mauricedb/react-server-components-24/commits/main/


Clone the 
GitHub 
Repository
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https://github.com/mauricedb/react-server-components-24


Install NPM 
Packages

 ☞ Use: npm install –force ☜
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Install NPM 
Packages
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Start branch  Start with the 00-start branch
 git checkout --track origin/00-start
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Start the 
application
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The 
application
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http://localhost:3000/science-fiction


What are React Server 
Components?
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React Server 
Components

 React Server Components (RSC) only execute on the server
 Traditionally React components always execute in the browser

 RSC are not the same as Server Side Rendering
 With SSR components are executed both on the client and server

 Applications are a combination of server and client components

 The result: The back and front-end code are more integrated
 Leading to better type safety ☺
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Before RSC
(no SSR)
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Server Side 
Rendering
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With RSC
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React Server 
Components

 Server components can be asynchronous
 Great to load data from some API

 Server components render just once
 No re-rendering with state changes or event handling

 The server component code is not send to the browser
 Can safely use secure API key’s etc.

 Smaller bundle sizes
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React Server 
Component

© ABL - The Problem Solver 23



React Client 
Components

 Server components can render both server and client components
 Client components can only render other client components

 Adding 'use client’ to the top of a component makes it a client 
component

 Used as a directive for the bundler to include this in the client JS bundle

 A client component is still executed on the server as part of SSR
 When using Next.js
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Next.js and the 
App Router
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Next.js and 
the App 
Router

 React is no longer just a client side library
 We need additional server side capabilities

 As well as additional code bundling options

 Next.js is the best production option available
 ☞ Remix doesn’t support RSC yet ☜

 There are also more experimental options
 Waku from Daishi Kato

 React Server Components Demo from the React team
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https://waku.gg/
https://github.com/reactjs/server-components-demo


Rendering RSC’s

 React Server Components are only rendered on the server
 And shipped to the client as a JSON like structure

 The React Server Component Payload

 The client then injects these JSON objects into the React tree
 Where it would previously have rendered these components themself

 ☞ React already used a 2 step process ☜
 Components render to a virtual DOM

 Just a series of JavaScript objects

 Reconciliation maps the virtual DOM to the browser DOM

 Or an HTML stream in the case or Server Side Rendering
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Async transport  RSC’s are streamed asynchronously to the client
 Enables using Suspense boundaries while loading
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Code bundling

 Multiple JavaScript bundles have to be made 
 The client and server have different code bundles

 Server Component code is never executed on the client
 Can use react-server-dom-webpack or a similar package
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Fetching data in a RSC
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Fetching data 
in a RSC

 React Server Components an execute normal Node.js code
 Read/write files on disk

 Do fetch requests to other servers

 Execute CRUD in a database

 RSC’s can be asynchronous where needed
 Just await whatever action needs to be done
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src\app\
science-fiction\
page.tsx
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https://github.com/mauricedb/react-server-components-24/commit/1b61d6de5db4899f4037f74c0f22b1c74ec05315


Async server 
child components
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Child RSC 
components

 A RSC component can render other RSC child components
 They can execute the same server based code

 Including async/await where needed
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src\app\science-
fiction\page.tsx
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https://github.com/mauricedb/react-server-components-24/commit/d158c79430cc7210702955dfeac9bc30a5d8a678


src\components
\movie-card.tsx
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https://github.com/mauricedb/react-server-components-24/commit/d158c79430cc7210702955dfeac9bc30a5d8a678


Suspense & RSC pages
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Suspense & 
RSC pages

 React Server Components are suspended until they resolve
 Can be controlled with <Suspense /> boundaries

 Next.js makes it easy to suspend when rendering an async page
 Add a loading.tsx next to the page.tsx

 They can be nested and the closest loading component will be used
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src\app\
science-fiction\
page.tsx
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https://github.com/mauricedb/react-server-components-24/commit/f2ec1e00baf5d12b8c186f0964127aafd9c9c794


src\app\
science-fiction\
loading.tsx
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https://github.com/mauricedb/react-server-components-24/commit/f2ec1e00baf5d12b8c186f0964127aafd9c9c794


RSC and streaming
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RSC and 
streaming

 Async React Server Components are streamed to the browser
 Using the React Server Component Payload

 On the client they are suspended until the component resolves

 Server action responses can also stream components back
 After a revalidatePath() or a revalidateTag()
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RSC Payload
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Client components
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Client 
components

 Client components are required in a number of scenarios
 With interactive UI elements like elements with a click handler

 When using browser API’s like localStorage

 When using React hooks like useState(), useEffect() etc.

 Add the `use client` directive 
 Makes a component a client component

 Client components render in the browser
 Can’t be asynchronous (for now)

 Can’t access files or databases on the local machine
 Other than using browser API’s

 With Server Side Rendering they can also execute on the server
 Next.js uses SSR by default
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Client Component
or 
Server Component

 React Server Components normally perform better
 Only render once on the server

 The code doesn’t need to be shipped to the browser

 Can be async and await data to be fetched
 No need for a render/effect/re-render cycle in the browser

 Components that don’t need client capabilities should be SRC’s
 State, effects, browser API’s etc. are client requirements
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src\components\
favourite-heart.tsx
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https://github.com/mauricedb/react-server-components-24/commit/4c422777566d8bc3f1b613a1040e4e438a85c9b2


What does 'use client’ 
really do
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What is a 
server 
component?

 What is a server component and what is not?
 Client components are marked with 'use client'

 But not all other components are server components
 With a component without 'use client’ it depends on their parents

 If a component is a client component 
 Then all components it renders are also client components

 ☞ There is no 'use server'  for server components ☜
 The 'use server’  directive exists but is used for Server Actions

 But there is a server-only NPM package
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server-only

 Import the server-only NPM package
 With components that must run on the server
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GrandChild is 
both a client 
and server 
component 
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Using an RSC 
as a child of a 
client 
component

 A client component can have a server component as a child
 As long as it doesn’t render it

 Render the child server component from another server component
  And pass it as a children prop into the client component 
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src\components\
server-or-client\
child.tsx
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https://github.com/mauricedb/react-server-components-24/commit/1d0cae5f92f39a50773d7f6ad67a2e3dd888577d


src\components\
server-or-client\
parent.tsx
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https://github.com/mauricedb/react-server-components-24/commit/1d0cae5f92f39a50773d7f6ad67a2e3dd888577d


Break time
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Calling Server Actions
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Calling Server 
Actions

 React Server Actions are functions that we can call on the client
 But then execute on the server

 Add the 'use server' annotation
 Can be at the top of a file or a single function

 Not related to server components

 Can be passed as the action of a client side <form /> 
 The forms data is passed as a FormData parameter

 Even works if JavaScript is disabled ☺

 Can also be called as a normal asynchronous function
 The network request is handled for you
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Form actions
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Form actions

 A <form> element can take a ‘action’ prop
 Can point to an action function that executes on the client or server

 More flexible that using the onSubmit

 All the <input> from the form is passed as a FormData parameter
 Use hidden inputs to pass additional data

 The server action function works even if JavaScript is disabled
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src\app\movie\
[id]\edit\
page.tsx
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https://github.com/mauricedb/react-server-components-24/commit/b87acdb567b53f4a08640156215c3d8a9b061f51


src\components\
movie-editor.tsx
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https://github.com/mauricedb/react-server-components-24/commit/b87acdb567b53f4a08640156215c3d8a9b061f51


Guarding client 
components against 
server code
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server-only

 Components that render in the browser shouldn’t execute server code
 This would usually result in a runtime error

 An immediate compile time error is better
 The server-only package does this

 npm install server-only

 Add import 'server-only’ to any code that should not be imported
 Only needed in the modules that actually execute the Node code
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package.json
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https://github.com/mauricedb/react-server-components-24/commit/e80c0c481a9effefc1d1b6b358946f2e3298bf62


src\lib\
prisma.ts
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src\app\
science-fiction\
page.tsx
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The error
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The useFormStatus() 
hook
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useFormStatus 
hook

 The useFormStatus() hook gives information about form submition
 The pending status let’s you know if a submit is active

 ☞ Must be in a component that is rendered as child from the <form> ☜
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src\components\
submit-button.tsx
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https://github.com/mauricedb/react-server-components-24/commit/3817fdbeb88c97f882a946b7fd0fab8e3eb23fbd


The useActionState() 
hook
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useActionState 
hook

 Updates component state based on the result of a form action
 The state round trips to the action function

 Useful for form validation etc

 ☞ Note: useFormState for now with production React/Next.js! ☜
 Doesn’t expose an isPending status
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package.json
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https://github.com/mauricedb/react-server-components-24/commit/6a5823b38e5e88c0441b6200404f2103d1dd4c79


src\components\
movie-editor.tsx
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https://github.com/mauricedb/react-server-components-24/commit/6a5823b38e5e88c0441b6200404f2103d1dd4c79


src\server\
actions.ts
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https://github.com/mauricedb/react-server-components-24/commit/6a5823b38e5e88c0441b6200404f2103d1dd4c79


Manually calling a 
server action
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Manually 
calling a server 
action

 Server actions act as normal asynchronous functions
 Makes the boundary between server and client almost transparent

 Call like a normal async function when needed
 The network call is handled for you

 Return any result you want
 As long as it can be serialized to JSON

 Don’t use throw new Error(‘Some message’)
 ☞ Error messages are hidden in a production build ☜
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src\components\
favourite-heart.tsx
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https://github.com/mauricedb/react-server-components-24/commit/6b3df975d10a15cb670c6c6c104be47653dc915a


The useOptimistic() 
hook
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useOptimistic 
hook

 Create more responsive user interfaces
 Immediately update the UI with an optimistic state before an 

asynchronous action

 Use whatever optimistic state you want
 Automatically updated when the action completes
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src\components\
favourite-heart.tsx
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https://github.com/mauricedb/react-server-components-24/commit/aab1fa1a9214978acf1c063b0338cba99ebd0ff4


Error handling & retrying
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Error handling 
& retrying

 An ErrorBoundary will catch errors in React Server Components
 The normal expected React behavior

 Next.js makes it easy to catch errors
 Add a error.tsx next to the page.tsx

 They can be nested and the closest will be used
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src\app\
error-handling\
error.tsx
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https://github.com/mauricedb/react-server-components-24/commit/d43b7a1d0bbc1a8b31ee3befdcb20a231bb1e7e2


Cleaning up the code
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Cleaning up the 
code

 It’s considered a best practice not to put server logic in the UI
 Server actions typically go into a separate actions.ts 
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src\app\movie
[id]\edit\
page.tsx
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src\server\
actions.ts
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src\components\
movie-card.tsx
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src\app\
science-fiction\
page.tsx
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Recommendations with 
React Server Components
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Recommendations

 Start with Shared components
 Can run on the server or client as needed

 Will default to act as Server Components

 Switch to Server only components if needed
 When you need to use server side capabilities

 Only use Client only components when absolutely needed
 Local state or side effects

 Interactivity

 Required browser API’s

 Learn all about the new capabilities of Next.js
 App Router
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Conclusion

 React Server Components are a great new addition to React
 Helps with keeping the client more responsive

 Makes the application architecture easier

 Use Next.js and the App Router
 Because you need a server

 React Client Components
 Are components with state and interactivity and require ‘use client’

 React Server Components are streamed
 And use Suspense boundaries until they are done

 Server Actions are a great way to call back into the server
 They also update the invalidated server components on the client

© ABL - The Problem Solver 93



Thank you for joining
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Share your thoughts
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