

Mastering React Server
Components and Server
Actions in React 19
Maurice de Beijer
@mauricedb

 Maurice de Beijer

 The Problem Solver

 Freelance developer/instructor

 Twitter: @mauricedb

 Web: https://www.theproblemsolver.dev/

 E-mail: maurice.de.beijer@gmail.com

© ABL - The Problem Solver 3

https://twitter.com/MauriceDB
https://www.theproblemsolver.dev/
mailto:maurice.de.beijer@gmail.com

Topics

 What are React Server Components and why would you care?

 Using Next.js and the App Router

 Turning a React Client Component into a React Server Component

 Updates and caching with React Server Components

 Querying the database from a React Server Component

 Suspense & React Server Components

 React Server Components and streaming

 Which components are really React Server Components?

 Using React Server Actions

© ABL - The Problem Solver 4

Type it out
by hand?

“Typing it drills it into your brain much better than
simply copying and pasting it. You're forming new
neuron pathways. Those pathways are going to
help you in the future. Help them out now!”

© ABL - The Problem Solver 5

Prerequisites
Install Node & NPM

Install the GitHub repository

© ABL - The Problem Solver 6

Install
Node.js & NPM

© ABL - The Problem Solver 7

https://git-scm.com/downloads
https://nodejs.org/en/

Following
Along

 Repo: https://github.com/mauricedb/react-server-components-24

 Slides: https://www.theproblemsolver.dev/docs/react-advanced-
2024.pdf

© ABL - The Problem Solver 8

https://github.com/mauricedb/react-server-components-24
https://www.theproblemsolver.dev/docs/react-advanced-2024.pdf
https://www.theproblemsolver.dev/docs/react-advanced-2024.pdf
https://bit.ly/487wSyx
https://github.com/mauricedb/react-server-components-24/commit/b071c99d95ee4f05e3fcdd5130513df3beea1b40

Create a new
Next.js app
with shadcn/ui

 npx shadcn@latest init --src-dir

© ABL - The Problem Solver 9

The changes

© ABL - The Problem Solver 10

https://github.com/mauricedb/react-server-components-24/commits/main/

Clone the
GitHub
Repository

© ABL - The Problem Solver 11

https://github.com/mauricedb/react-server-components-24

Install NPM
Packages

 ☞ Use: npm install –force ☜

© ABL - The Problem Solver 12

Install NPM
Packages

© ABL - The Problem Solver 13

Start branch  Start with the 00-start branch
 git checkout --track origin/00-start

© ABL - The Problem Solver 14

Start the
application

© ABL - The Problem Solver 15

The
application

© ABL - The Problem Solver 16

http://localhost:3000/science-fiction

What are React Server
Components?

© ABL - The Problem Solver 17

React Server
Components

 React Server Components (RSC) only execute on the server
 Traditionally React components always execute in the browser

 RSC are not the same as Server Side Rendering
 With SSR components are executed both on the client and server

 Applications are a combination of server and client components

 The result: The back and front-end code are more integrated
 Leading to better type safety ☺

© ABL - The Problem Solver 18

Before RSC
(no SSR)

© ABL - The Problem Solver 19

Server Side
Rendering

© ABL - The Problem Solver 20

With RSC

© ABL - The Problem Solver 21

React Server
Components

 Server components can be asynchronous
 Great to load data from some API

 Server components render just once
 No re-rendering with state changes or event handling

 The server component code is not send to the browser
 Can safely use secure API key’s etc.

 Smaller bundle sizes

© ABL - The Problem Solver 22

React Server
Component

© ABL - The Problem Solver 23

React Client
Components

 Server components can render both server and client components
 Client components can only render other client components

 Adding 'use client’ to the top of a component makes it a client
component

 Used as a directive for the bundler to include this in the client JS bundle

 A client component is still executed on the server as part of SSR
 When using Next.js

© ABL - The Problem Solver 24

Next.js and the
App Router

© ABL - The Problem Solver 25

Next.js and
the App
Router

 React is no longer just a client side library
 We need additional server side capabilities

 As well as additional code bundling options

 Next.js is the best production option available
 ☞ Remix doesn’t support RSC yet ☜

 There are also more experimental options
 Waku from Daishi Kato

 React Server Components Demo from the React team

© ABL - The Problem Solver 26

https://waku.gg/
https://github.com/reactjs/server-components-demo

Rendering RSC’s

 React Server Components are only rendered on the server
 And shipped to the client as a JSON like structure

 The React Server Component Payload

 The client then injects these JSON objects into the React tree
 Where it would previously have rendered these components themself

 ☞ React already used a 2 step process ☜
 Components render to a virtual DOM

 Just a series of JavaScript objects

 Reconciliation maps the virtual DOM to the browser DOM

 Or an HTML stream in the case or Server Side Rendering

© ABL - The Problem Solver 27

Async transport  RSC’s are streamed asynchronously to the client
 Enables using Suspense boundaries while loading

© ABL - The Problem Solver 28

Code bundling

 Multiple JavaScript bundles have to be made
 The client and server have different code bundles

 Server Component code is never executed on the client
 Can use react-server-dom-webpack or a similar package

© ABL - The Problem Solver 29

Fetching data in a RSC

© ABL - The Problem Solver 30

Fetching data
in a RSC

 React Server Components an execute normal Node.js code
 Read/write files on disk

 Do fetch requests to other servers

 Execute CRUD in a database

 RSC’s can be asynchronous where needed
 Just await whatever action needs to be done

© ABL - The Problem Solver 31

src\app\
science-fiction\
page.tsx

© ABL - The Problem Solver 32

https://github.com/mauricedb/react-server-components-24/commit/1b61d6de5db4899f4037f74c0f22b1c74ec05315

Async server
child components

© ABL - The Problem Solver 33

Child RSC
components

 A RSC component can render other RSC child components
 They can execute the same server based code

 Including async/await where needed

© ABL - The Problem Solver 34

src\app\science-
fiction\page.tsx

© ABL - The Problem Solver 35

https://github.com/mauricedb/react-server-components-24/commit/d158c79430cc7210702955dfeac9bc30a5d8a678

src\components
\movie-card.tsx

© ABL - The Problem Solver 36

https://github.com/mauricedb/react-server-components-24/commit/d158c79430cc7210702955dfeac9bc30a5d8a678

Suspense & RSC pages

© ABL - The Problem Solver 37

Suspense &
RSC pages

 React Server Components are suspended until they resolve
 Can be controlled with <Suspense /> boundaries

 Next.js makes it easy to suspend when rendering an async page
 Add a loading.tsx next to the page.tsx

 They can be nested and the closest loading component will be used

© ABL - The Problem Solver 38

src\app\
science-fiction\
page.tsx

© ABL - The Problem Solver 39

https://github.com/mauricedb/react-server-components-24/commit/f2ec1e00baf5d12b8c186f0964127aafd9c9c794

src\app\
science-fiction\
loading.tsx

© ABL - The Problem Solver 40

https://github.com/mauricedb/react-server-components-24/commit/f2ec1e00baf5d12b8c186f0964127aafd9c9c794

RSC and streaming

© ABL - The Problem Solver 41

RSC and
streaming

 Async React Server Components are streamed to the browser
 Using the React Server Component Payload

 On the client they are suspended until the component resolves

 Server action responses can also stream components back
 After a revalidatePath() or a revalidateTag()

© ABL - The Problem Solver 42

RSC Payload

© ABL - The Problem Solver 43

Client components

© ABL - The Problem Solver 44

Client
components

 Client components are required in a number of scenarios
 With interactive UI elements like elements with a click handler

 When using browser API’s like localStorage

 When using React hooks like useState(), useEffect() etc.

 Add the `use client` directive
 Makes a component a client component

 Client components render in the browser
 Can’t be asynchronous (for now)

 Can’t access files or databases on the local machine
 Other than using browser API’s

 With Server Side Rendering they can also execute on the server
 Next.js uses SSR by default

© ABL - The Problem Solver 45

Client Component
or
Server Component

 React Server Components normally perform better
 Only render once on the server

 The code doesn’t need to be shipped to the browser

 Can be async and await data to be fetched
 No need for a render/effect/re-render cycle in the browser

 Components that don’t need client capabilities should be SRC’s
 State, effects, browser API’s etc. are client requirements

© ABL - The Problem Solver 46

src\components\
favourite-heart.tsx

© ABL - The Problem Solver 47

https://github.com/mauricedb/react-server-components-24/commit/4c422777566d8bc3f1b613a1040e4e438a85c9b2

What does 'use client’
really do

© ABL - The Problem Solver 48

What is a
server
component?

 What is a server component and what is not?
 Client components are marked with 'use client'

 But not all other components are server components
 With a component without 'use client’ it depends on their parents

 If a component is a client component
 Then all components it renders are also client components

 ☞ There is no 'use server' for server components ☜
 The 'use server’ directive exists but is used for Server Actions

 But there is a server-only NPM package

© ABL - The Problem Solver 49

server-only

 Import the server-only NPM package
 With components that must run on the server

© ABL - The Problem Solver 50

GrandChild is
both a client
and server
component

© ABL - The Problem Solver 51

Using an RSC
as a child of a
client
component

 A client component can have a server component as a child
 As long as it doesn’t render it

 Render the child server component from another server component
 And pass it as a children prop into the client component

© ABL - The Problem Solver 52

src\components\
server-or-client\
child.tsx

© ABL - The Problem Solver 53

https://github.com/mauricedb/react-server-components-24/commit/1d0cae5f92f39a50773d7f6ad67a2e3dd888577d

src\components\
server-or-client\
parent.tsx

© ABL - The Problem Solver 54

https://github.com/mauricedb/react-server-components-24/commit/1d0cae5f92f39a50773d7f6ad67a2e3dd888577d

Break time

© ABL - The Problem Solver 55

Calling Server Actions

© ABL - The Problem Solver 56

Calling Server
Actions

 React Server Actions are functions that we can call on the client
 But then execute on the server

 Add the 'use server' annotation
 Can be at the top of a file or a single function

 Not related to server components

 Can be passed as the action of a client side <form />
 The forms data is passed as a FormData parameter

 Even works if JavaScript is disabled ☺

 Can also be called as a normal asynchronous function
 The network request is handled for you

© ABL - The Problem Solver 57

Form actions

© ABL - The Problem Solver 58

Form actions

 A <form> element can take a ‘action’ prop
 Can point to an action function that executes on the client or server

 More flexible that using the onSubmit

 All the <input> from the form is passed as a FormData parameter
 Use hidden inputs to pass additional data

 The server action function works even if JavaScript is disabled

© ABL - The Problem Solver 59

src\app\movie\
[id]\edit\
page.tsx

© ABL - The Problem Solver 60

https://github.com/mauricedb/react-server-components-24/commit/b87acdb567b53f4a08640156215c3d8a9b061f51

src\components\
movie-editor.tsx

© ABL - The Problem Solver 61

https://github.com/mauricedb/react-server-components-24/commit/b87acdb567b53f4a08640156215c3d8a9b061f51

Guarding client
components against
server code

© ABL - The Problem Solver 62

server-only

 Components that render in the browser shouldn’t execute server code
 This would usually result in a runtime error

 An immediate compile time error is better
 The server-only package does this

 npm install server-only

 Add import 'server-only’ to any code that should not be imported
 Only needed in the modules that actually execute the Node code

© ABL - The Problem Solver 63

package.json

© ABL - The Problem Solver 64

https://github.com/mauricedb/react-server-components-24/commit/e80c0c481a9effefc1d1b6b358946f2e3298bf62

src\lib\
prisma.ts

© ABL - The Problem Solver 65

https://github.com/mauricedb/react-server-components-24/commit/e80c0c481a9effefc1d1b6b358946f2e3298bf62

src\app\
science-fiction\
page.tsx

© ABL - The Problem Solver 66

https://github.com/mauricedb/react-server-components-24/commit/e80c0c481a9effefc1d1b6b358946f2e3298bf62

The error

© ABL - The Problem Solver 67

The useFormStatus()
hook

© ABL - The Problem Solver 68

useFormStatus
hook

 The useFormStatus() hook gives information about form submition
 The pending status let’s you know if a submit is active

 ☞ Must be in a component that is rendered as child from the <form> ☜

© ABL - The Problem Solver 69

src\components\
submit-button.tsx

© ABL - The Problem Solver 70

https://github.com/mauricedb/react-server-components-24/commit/3817fdbeb88c97f882a946b7fd0fab8e3eb23fbd

The useActionState()
hook

© ABL - The Problem Solver 71

useActionState
hook

 Updates component state based on the result of a form action
 The state round trips to the action function

 Useful for form validation etc

 ☞ Note: useFormState for now with production React/Next.js! ☜
 Doesn’t expose an isPending status

© ABL - The Problem Solver 72

package.json

© ABL - The Problem Solver 73

https://github.com/mauricedb/react-server-components-24/commit/6a5823b38e5e88c0441b6200404f2103d1dd4c79

src\components\
movie-editor.tsx

© ABL - The Problem Solver 74

https://github.com/mauricedb/react-server-components-24/commit/6a5823b38e5e88c0441b6200404f2103d1dd4c79

src\server\
actions.ts

© ABL - The Problem Solver 75

https://github.com/mauricedb/react-server-components-24/commit/6a5823b38e5e88c0441b6200404f2103d1dd4c79

Manually calling a
server action

© ABL - The Problem Solver 76

Manually
calling a server
action

 Server actions act as normal asynchronous functions
 Makes the boundary between server and client almost transparent

 Call like a normal async function when needed
 The network call is handled for you

 Return any result you want
 As long as it can be serialized to JSON

 Don’t use throw new Error(‘Some message’)
 ☞ Error messages are hidden in a production build ☜

© ABL - The Problem Solver 77

src\components\
favourite-heart.tsx

© ABL - The Problem Solver 78

https://github.com/mauricedb/react-server-components-24/commit/6b3df975d10a15cb670c6c6c104be47653dc915a

The useOptimistic()
hook

© ABL - The Problem Solver 79

useOptimistic
hook

 Create more responsive user interfaces
 Immediately update the UI with an optimistic state before an

asynchronous action

 Use whatever optimistic state you want
 Automatically updated when the action completes

© ABL - The Problem Solver 80

src\components\
favourite-heart.tsx

© ABL - The Problem Solver 81

https://github.com/mauricedb/react-server-components-24/commit/aab1fa1a9214978acf1c063b0338cba99ebd0ff4

Error handling & retrying

© ABL - The Problem Solver 82

Error handling
& retrying

 An ErrorBoundary will catch errors in React Server Components
 The normal expected React behavior

 Next.js makes it easy to catch errors
 Add a error.tsx next to the page.tsx

 They can be nested and the closest will be used

© ABL - The Problem Solver 83

src\app\
error-handling\
error.tsx

© ABL - The Problem Solver 84

https://github.com/mauricedb/react-server-components-24/commit/d43b7a1d0bbc1a8b31ee3befdcb20a231bb1e7e2

Cleaning up the code

© ABL - The Problem Solver 85

Cleaning up the
code

 It’s considered a best practice not to put server logic in the UI
 Server actions typically go into a separate actions.ts

© ABL - The Problem Solver 86

src\app\movie
[id]\edit\
page.tsx

© ABL - The Problem Solver 87

src\server\
actions.ts

© ABL - The Problem Solver 88

src\components\
movie-card.tsx

© ABL - The Problem Solver 89

src\app\
science-fiction\
page.tsx

© ABL - The Problem Solver 90

Recommendations with
React Server Components

© ABL - The Problem Solver 91

Recommendations

 Start with Shared components
 Can run on the server or client as needed

 Will default to act as Server Components

 Switch to Server only components if needed
 When you need to use server side capabilities

 Only use Client only components when absolutely needed
 Local state or side effects

 Interactivity

 Required browser API’s

 Learn all about the new capabilities of Next.js
 App Router

© ABL - The Problem Solver 92

Conclusion

 React Server Components are a great new addition to React
 Helps with keeping the client more responsive

 Makes the application architecture easier

 Use Next.js and the App Router
 Because you need a server

 React Client Components
 Are components with state and interactivity and require ‘use client’

 React Server Components are streamed
 And use Suspense boundaries until they are done

 Server Actions are a great way to call back into the server
 They also update the invalidated server components on the client

© ABL - The Problem Solver 93

Thank you for joining

© ABL - The Problem Solver 94

Share your thoughts

https://x.com/intent/post?text=Mastering+React+Server+Components+and+Server+Actions+in+React+19+by+%40mauricedb

	Slide 1
	Slide 2: Mastering React Server Components and Server Actions in React 19
	Slide 3
	Slide 4: Topics
	Slide 5: Type it out by hand?
	Slide 6: Prerequisites
	Slide 7: Install Node.js & NPM
	Slide 8: Following Along
	Slide 9: Create a new Next.js app with shadcn/ui
	Slide 10: The changes
	Slide 11: Clone the GitHub Repository
	Slide 12: Install NPM Packages
	Slide 13: Install NPM Packages
	Slide 14: Start branch
	Slide 15: Start the application
	Slide 16: The application
	Slide 17: What are React Server Components?
	Slide 18: React Server Components
	Slide 19: Before RSC (no SSR)
	Slide 20: Server Side Rendering
	Slide 21: With RSC
	Slide 22: React Server Components
	Slide 23: React Server Component
	Slide 24: React Client Components
	Slide 25: Next.js and the App Router
	Slide 26: Next.js and the App Router
	Slide 27: Rendering RSC’s
	Slide 28: Async transport
	Slide 29: Code bundling
	Slide 30: Fetching data in a RSC
	Slide 31: Fetching data in a RSC
	Slide 32: src\app\ science-fiction\ page.tsx
	Slide 33: Async server child components
	Slide 34: Child RSC components
	Slide 35: src\app\science-fiction\page.tsx
	Slide 36: src\components\movie-card.tsx
	Slide 37: Suspense & RSC pages
	Slide 38: Suspense & RSC pages
	Slide 39: src\app\ science-fiction\ page.tsx
	Slide 40: src\app\ science-fiction\ loading.tsx
	Slide 41: RSC and streaming
	Slide 42: RSC and streaming
	Slide 43: RSC Payload
	Slide 44: Client components
	Slide 45: Client components
	Slide 46: Client Component or Server Component
	Slide 47: src\components\ favourite-heart.tsx
	Slide 48: What does 'use client’ really do
	Slide 49: What is a server component?
	Slide 50: server-only
	Slide 51: GrandChild is both a client and server component
	Slide 52: Using an RSC as a child of a client component
	Slide 53: src\components\server-or-client\ child.tsx
	Slide 54: src\components\server-or-client\ parent.tsx
	Slide 55: Break time
	Slide 56: Calling Server Actions
	Slide 57: Calling Server Actions
	Slide 58: Form actions
	Slide 59: Form actions
	Slide 60: src\app\movie\ [id]\edit\ page.tsx
	Slide 61: src\components\ movie-editor.tsx
	Slide 62: Guarding client components against server code
	Slide 63: server-only
	Slide 64: package.json
	Slide 65: src\lib\ prisma.ts
	Slide 66: src\app\ science-fiction\ page.tsx
	Slide 67: The error
	Slide 68: The useFormStatus() hook
	Slide 69: useFormStatus hook
	Slide 70: src\components\ submit-button.tsx
	Slide 71: The useActionState() hook
	Slide 72: useActionState hook
	Slide 73: package.json
	Slide 74: src\components\ movie-editor.tsx
	Slide 75: src\server\ actions.ts
	Slide 76: Manually calling a server action
	Slide 77: Manually calling a server action
	Slide 78: src\components\ favourite-heart.tsx
	Slide 79: The useOptimistic() hook
	Slide 80: useOptimistic hook
	Slide 81: src\components\ favourite-heart.tsx
	Slide 82: Error handling & retrying
	Slide 83: Error handling & retrying
	Slide 84: src\app\ error-handling\ error.tsx
	Slide 85: Cleaning up the code
	Slide 86: Cleaning up the code
	Slide 87: src\app\movie [id]\edit\ page.tsx
	Slide 88: src\server\ actions.ts
	Slide 89: src\components\ movie-card.tsx
	Slide 90: src\app\ science-fiction\ page.tsx
	Slide 91: Recommendations with React Server Components
	Slide 92: Recommendations
	Slide 93: Conclusion
	Slide 94: Thank you for joining

