
Advanced TypeScript types
for fun and reliability
Maurice de Beijer
@mauricedb

 Maurice de Beijer

 The Problem Solver

 Microsoft MVP

 Freelance developer/instructor

 Twitter: @mauricedb

 Web: http://www.TheProblemSolver.nl

 E-mail: maurice.de.beijer@gmail.com

2© ABL - The Problem Solver

https://twitter.com/MauriceDB
http://www.theproblemsolver.nl/
mailto:maurice.de.beijer@gmail.com
http://www.theproblemsolver.nl/

Workshop goal

 Use TypeScript’s strict settings to catch as many errors as possible

 How to validate data against it’s type definition at runtime

 Using mapped types to create better type definitions

 Using custom type mapping definitions

 When to use the unknown and any types

 Opaque types for better type checking

 Using type predicates and assertions

© ABL - The Problem Solver 3

Type it out
by hand?

“Typing it drills it into your brain much better than
simply copying and pasting it. You're forming new
neuron pathways. Those pathways are going to
help you in the future. Help them out now!”

© ABL - The Problem Solver 4

Prerequisites
Install Node & NPM

Install the GitHub repository

© ABL - The Problem Solver 5

Install
Node.js & NPM

© ABL - The Problem Solver 6

https://nodejs.org/en/

Following
Along

 Repository: https://github.com/mauricedb/ts-advanced

 Slides: http://theproblemsolver.nl/docs/ts-advanced-workshop.pdf

© ABL - The Problem Solver 7

https://github.com/mauricedb/ts-advanced
http://theproblemsolver.nl/docs/ts-advanced-workshop.pdf
https://github.com/mauricedb/ts-advanced/commit/34b1f611e588ec5282c20bb8882e512ce3cb588a

The changes

https://github.com/mauricedb/ts-advanced/commits/main

Clone the
GitHub
Repository

© ABL - The Problem Solver 9

Install NPM
Packages

© ABL - The Problem Solver 10

Start the
application

© ABL - The Problem Solver 11

The
application

Enabling strict mode

Strict mode

 Start with the 00-start branch

 Set the strict compiler option to true
 Usually in the tsconfig.json

 The “?.” optional chaining operator helps
 Only use properties when the parent is defined

 The “??” nullish coalescing operator
 Like the “||” or operator but only for “null” and “undefined”

 Great for default values

 The “!” non-null assertion operator
 Removes “null” and “undefined” from a type

tsconfig.json

https://github.com/mauricedb/ts-advanced/commit/e161746f6bca80265aa2b029137b215ba62b07b2

main.ts

https://github.com/mauricedb/ts-advanced/commit/e161746f6bca80265aa2b029137b215ba62b07b2

main.ts

https://github.com/mauricedb/ts-advanced/commit/e161746f6bca80265aa2b029137b215ba62b07b2

More strict features

More Strict
Features

 There are many more strict settings not enabled by “strict”
 allowUnreachableCode

 allowUnusedLabels

 exactOptionalPropertyTypes

 noFallthroughCasesInSwitch

 noImplicitOverride

 noImplicitReturns

 noPropertyAccessFromIndexSignature

 noUncheckedIndexedAccess

 noUnusedLocals

 noUnusedParameters

tsconfig.json

https://github.com/mauricedb/ts-advanced/commit/66c0ee8df70d042b1e3f7a97ab911e36a46dbfa8

Unchecked
Indexed
Access

main.ts

https://github.com/mauricedb/ts-advanced/commit/66c0ee8df70d042b1e3f7a97ab911e36a46dbfa8

Unused
Parameters

main.ts

https://github.com/mauricedb/ts-advanced/commit/66c0ee8df70d042b1e3f7a97ab911e36a46dbfa8

Validating data at the
boundary

Validating
Data

 The type definitions are used at compile time

 They might not match the runtime behavior
 Specially when doing AJAX requests or reading JSON files

package.json

https://github.com/mauricedb/ts-advanced/commit/020826bf2ef9c2ae7dfa0744b84caf63ecb2e668

main.ts

https://github.com/mauricedb/ts-advanced/commit/020826bf2ef9c2ae7dfa0744b84caf63ecb2e668

main.ts

https://github.com/mauricedb/ts-advanced/commit/020826bf2ef9c2ae7dfa0744b84caf63ecb2e668

Inferring TypeScript types

Inferring Types

 Maintaining a Zod schema and a TypeScript interface is tedious
 Both have to be kept in sync

 The TypeScript types can be inferred from the Zod schema
 Using “z.infer(typeof schema)”

types.ts

https://github.com/mauricedb/ts-advanced/commit/7b38bc26123dba47120716618843beba30c184bb

Unknown In Catch

Unknown
Catch

 In ECMAScript any type of variable can be thrown
 The default for the variable in the catch is “any”

 With useUnknownInCatchVariables set to true it will be “unknown”
 Use a type guard to check the actual type

 Can still be explicitly defined as “any” when needed

main.ts

https://github.com/mauricedb/ts-advanced/commit/b0d27f9b31859ec2b2982bb3f5a4b28dd46310cc

Mapped Types

Mapped Types

 Mapped types are very flexible and powerful

 Many build in mapped types
 Readonly<Type>

 Omit<Type, Keys>

 Pick<Type, Keys>

 Partial<Type>

 Easy to create custom mapped types
 Zod infer<typeof schema>

 DeepReadonly<Type>

Using Readonly<T>

Readonly<T>

 The Readonly<T> mapped type creates a read-only mapped type
 Can’t change properties anymore

 Or use “array.push()” etc.

 Readonly<T> is not recursive
 Only the first level of properties becomes read-only

 Recommended for function arguments to show intent
 And AJAX responses etc.

types.ts

https://github.com/mauricedb/ts-advanced/commit/b6b11ac27066ffa385706ec6dd590ba37f89e32b

main.ts

https://github.com/mauricedb/ts-advanced/commit/b6b11ac27066ffa385706ec6dd590ba37f89e32b

main.ts

https://github.com/mauricedb/ts-advanced/commit/b6b11ac27066ffa385706ec6dd590ba37f89e32b

DeepReadonly<T>

DeepReadonly<T>

 Make a whole nested object structure read-only
 Recursive mapped types are very powerful

 An improvement over the default Readonly<T>

 Source:
https://gist.github.com/basarat/1c2923f91643a16a90de638e76bce0ab

https://gist.github.com/basarat/1c2923f91643a16a90de638e76bce0ab

types.ts

https://github.com/mauricedb/ts-advanced/commit/9902b7e0d92a11665d26a480c2fa99110441d491

Indexed Access Types

Indexed Access
Types

 Sometimes you want to access the type of a specific property
 To avoid manually duplicating the type

 But the type is not exposed

 Some other very useful mapped types:
 Parameters< typeof someFunction>

 ReturnType< typeof someFunction>

 ConstructorParameters<T>

types.ts

https://github.com/mauricedb/ts-advanced/commit/114140d562610cf98869b946835588534e769659

Type Mapping with
Omit<> and Pick<>

Omit<>
Pick<>

 Use Omit<T> and Pick<T> to build custom types based on others
 Pick<T> lets you specify all the properties you want to copy

 Omit<T> lets you take all properties except the listed ones

 Use the Exclude<T> and Extract<T> to mutate types

types.ts

https://github.com/mauricedb/ts-advanced/commit/ec6a9dc80055bf52000156bf41b74bb979bf01c3

Displaying Types

Displaying
Types

 A disadvantage of mapped types is that the type definition in
tooltips becomes hard to read

 It shows how a type is constructed instead of the resulting type

 The Resolve<T> turns this into the resulting type instead
 Source:

https://effectivetypescript.com/2022/02/25/gentips-4-display/

https://effectivetypescript.com/2022/02/25/gentips-4-display/

main.ts

https://github.com/mauricedb/ts-advanced/commit/21464906ce7dfa977d42cd64f4f6f4ff0d7dfe26

types.ts

https://github.com/mauricedb/ts-advanced/commit/21464906ce7dfa977d42cd64f4f6f4ff0d7dfe26

main.ts

https://github.com/mauricedb/ts-advanced/commit/21464906ce7dfa977d42cd64f4f6f4ff0d7dfe26

Opaque Types

Opaque Types

 A lot of business data ultimately end up as a primitive data type
 They are all modeled as string, number etc.

 The compiler doesn’t know the difference between them
 A PO box number and invoice total amount are both type “number”

 The same for the compiler

 Very different for the business case

 Opaque types can make it easier to reason about code
 By providing distinct types and a clear separation

types.ts

https://github.com/mauricedb/ts-advanced/commit/34b1f611e588ec5282c20bb8882e512ce3cb588a

main.ts

https://github.com/mauricedb/ts-advanced/commit/34b1f611e588ec5282c20bb8882e512ce3cb588a

main.ts

https://github.com/mauricedb/ts-advanced/commit/34b1f611e588ec5282c20bb8882e512ce3cb588a

Type Predicate Functions

Type
Predicate
Functions

 Often a TypeScript cast is used when types don’t quite line up
 But that is just silencing the compiler

 Casting via “unknown” will even allow any (invalid) type cast

 There is no runtime checking or guarantee

 A type predicate can do a cast in a runtime safe manner
 Checks both at runtime and compile time

 A function that returns a “boolean” to indicate if the type matches

types.ts

https://github.com/mauricedb/ts-advanced/commit/5c82c4eed00f859370aa452112f4ee5e3136cc14

main.ts

https://github.com/mauricedb/ts-advanced/commit/5c82c4eed00f859370aa452112f4ee5e3136cc14

Type Assertion Functions

Type
Assertion
Functions

 Type assertion functions can be even easier
 Throw an error if the type doesn’t match

 Often a better alternative then a cast
 The code will not continue if the assumption is wrong

types.ts

https://github.com/mauricedb/ts-advanced/commit/45350f9e1842f525f54fb4c78ab76506b243e226

main.ts

https://github.com/mauricedb/ts-advanced/commit/45350f9e1842f525f54fb4c78ab76506b243e226

Exhaustiveness Checking

Exhaustiveness
Checking

 The TypeScript compiler doesn’t tell us if every case is provided
 It’s easy to forget to add a switch case when an enumeration is expanded

 The “never” type is a great way to make sure
 A compile error if the default case can be reached

 Make sure to add an exception or error logging at runtime

exhaustive.ts

https://github.com/mauricedb/ts-advanced/commit/4b04e88b2c7bf4d0a38ebd8fe045fc050a2aa92a

Conclusion

 TypeScript’s strict settings help catch many errors
 Make sure to turn on the additional strict features as well

 Validate all data at boundaries
 Not just from the user, also from API’s

 Use type predicates and assertions both at compile and run-time
 Instead of just casting at compile time

 Use mapped types to create new types
 The possibilities are almost endless

 Enable exhaustiveness checking with the “never” type
 Make sure to log unexpected cases at runtime

Maurice de Beijer

@mauricedb

maurice.de.beijer
@gmail.com

© ABL - The Problem Solver 72

https://twitter.com/MauriceDB
mailto:maurice.de.beijer@gmail.com
mailto:maurice.de.beijer@gmail.com

	Slide 1: Advanced TypeScript types for fun and reliability
	Slide 2
	Slide 3: Workshop goal
	Slide 4: Type it out by hand?
	Slide 5: Prerequisites
	Slide 6: Install Node.js & NPM
	Slide 7: Following Along
	Slide 8: The changes
	Slide 9: Clone the GitHub Repository
	Slide 10: Install NPM Packages
	Slide 11: Start the application
	Slide 12: The application
	Slide 13: Enabling strict mode
	Slide 14: Strict mode
	Slide 15: tsconfig.json
	Slide 16: main.ts
	Slide 17: main.ts
	Slide 18: More strict features
	Slide 19: More Strict Features
	Slide 20: tsconfig.json
	Slide 21: Unchecked Indexed Access main.ts
	Slide 22: Unused Parameters main.ts
	Slide 23: Validating data at the boundary
	Slide 24: Validating Data
	Slide 25: package.json
	Slide 26: main.ts
	Slide 27: main.ts
	Slide 28: Inferring TypeScript types
	Slide 29: Inferring Types
	Slide 30: types.ts
	Slide 31: Unknown In Catch
	Slide 32: Unknown Catch
	Slide 33: main.ts
	Slide 34: Mapped Types
	Slide 35: Mapped Types
	Slide 36: Using Readonly<T>
	Slide 37: Readonly<T>
	Slide 38: types.ts
	Slide 39: main.ts
	Slide 40: main.ts
	Slide 41: DeepReadonly<T>
	Slide 42: DeepReadonly<T>
	Slide 43: types.ts
	Slide 44: Indexed Access Types
	Slide 45: Indexed Access Types
	Slide 46: types.ts
	Slide 47: Type Mapping with Omit<> and Pick<>
	Slide 48: Omit<> Pick<>
	Slide 49: types.ts
	Slide 50: Displaying Types
	Slide 51: Displaying Types
	Slide 52: main.ts
	Slide 53: types.ts
	Slide 54: main.ts
	Slide 55: Opaque Types
	Slide 56: Opaque Types
	Slide 57: types.ts
	Slide 58: main.ts
	Slide 59: main.ts
	Slide 60: Type Predicate Functions
	Slide 61: Type Predicate Functions
	Slide 62: types.ts
	Slide 63: main.ts
	Slide 64: Type Assertion Functions
	Slide 65: Type Assertion Functions
	Slide 66: types.ts
	Slide 67: main.ts
	Slide 68: Exhaustiveness Checking
	Slide 69: Exhaustiveness Checking
	Slide 70: exhaustive.ts
	Slide 71: Conclusion
	Slide 72: Maurice de Beijer @mauricedb maurice.de.beijer@gmail.com

